

Welcome

Machine Learning in Predictive Maintenance and Safety Using MG24

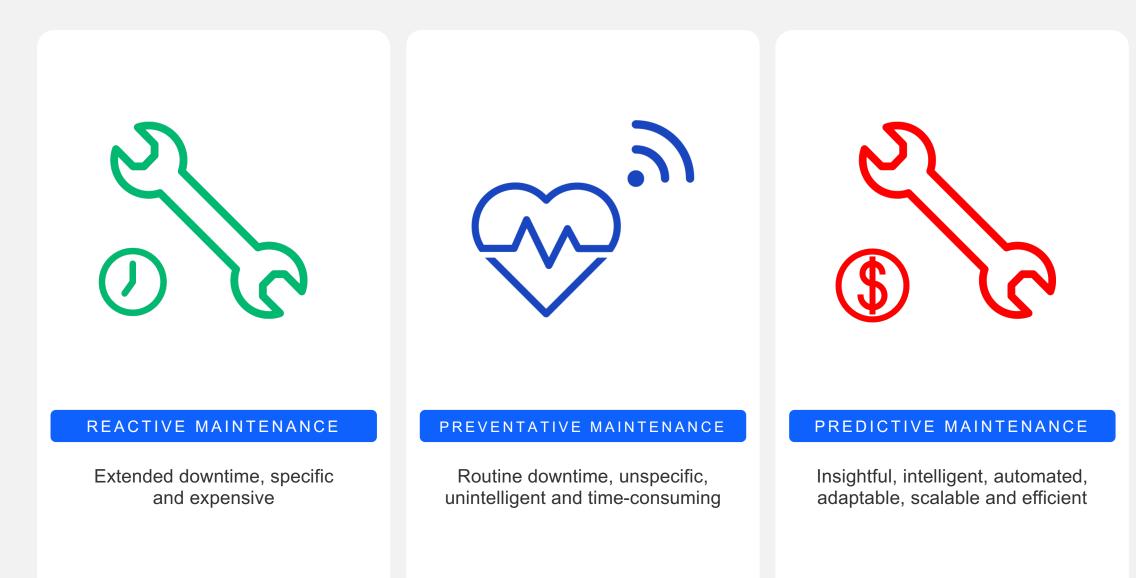
Andrew Halstead, Sr. FAE, Wireless

BLUETOOTH SERIES

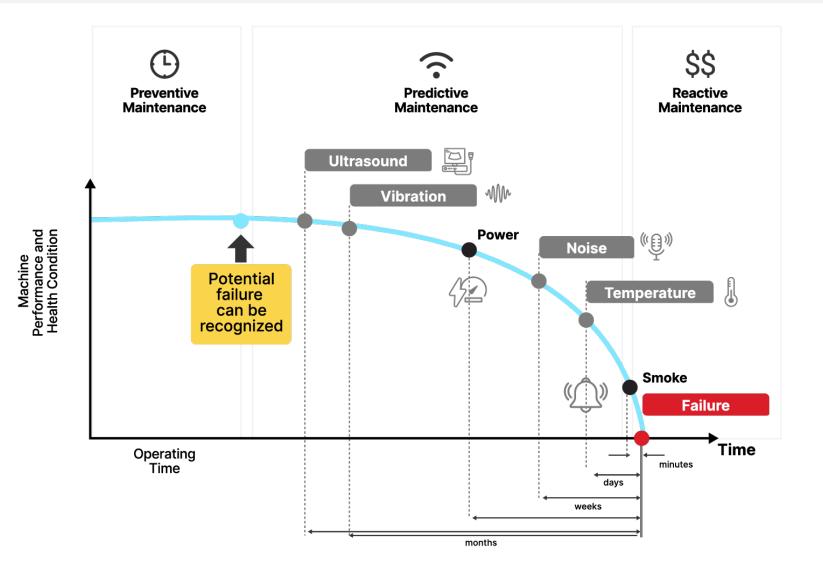
tech telks upcoming sessions

FEB 23 RD	ML in Predictive Maintenance and Safety Applications
MAR 23 RD	Unboxing: What's New With Bluetooth
APR 20 [™]	What's New with Bluetooth Mesh 1.1
MAY 18 ^{тн}	Bluetooth Portfolio: What's Right for Your Application
JUN 15 [™]	The Latest in HADM With Bluetooth LE

Agenda


- What is Predictive Maintenance?
- Use of AI/ML at the Edge for Predictive Maintenance
- Silicon Labs' Solutions
- Machine Learning Tools
- Machine Learning Demonstration
- Summary & Available Resources
- Q&A

Predictive Maintenance and AI/ML



Preventative vs Predictive vs Reactive Maintenance

Sensors for anomaly detection

Why AI/ML at the Edge?

Low Latency Required

- Mission or safety-critical applications require realtime reactions
- Large data to process typically at vision use cases - no time to upload to anywhere to process

ency ed

Privacy and IP

Protection, Security

- Data never leaves the sensing device, only inference result/metadata is transferred
- Less sensitive data to transmit, less chance to be hacked
- Protecting IP

Bandwidth and Power Constraints

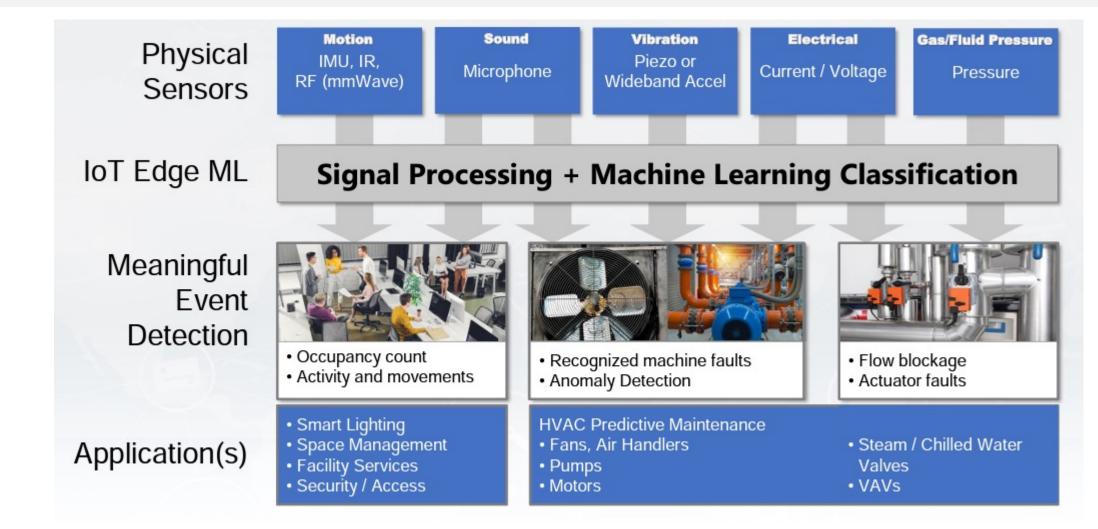
 Long range, low power, and slow networks can't transfer all TimeSeries data to process somewhere else

- Overloading of mesh network is an issue
- Large data to chunk
- Process vs. transmit tradeoff in power cons.

Offline Mode Operation

 Local system keeps operating standalone in case of any network issue

 Connectivity is occasional or blocked by admin Cost Reduction


•••

- Network and
 infrastructure costs
- Data ingestion costs
- Data storage costs
- Cloud services
- Ops, maintenance
- Compact edge with ML solutions integrated to wireless SoC

Data processing is more efficient with AI/ML at the Tiny Edge – various new use cases enabled

Use Cases for AI/ML at the Edge in Predictive Maintenance

Source: SensiML – WorksWith 2021

Silicon Labs' Solutions for Predictive Maintenance

Silicon Labs' Predictive Maintenance Solutions

- Silicon Labs solutions cover a variety of IoT protocols suited for different range, power and topography.
 - Wi-Fi 6 for long range and dense networks
 - With cloud connection and Bluetooth LE combo
 - Long-range low-power Sub-Gig
 - With Bluetooth LE and Wi-SUN
 - Proprietary, 15.4 and Wirepas Mesh
- Silicon Labs hardware comes with state-of-the-art Security and advanced MVP HW acceleration engines for AI/ML for ADC and GPIO time-series sensor applications

BG24 and MG24: Optimized for Battery Powered IoT Mesh Devices

Sensing at the Edge

AI/ML Hardware Accelerator Key Features

- Optimized Matrix processor to accelerate ML inferencing with a lot of processing power offloading the CPU
- Real and complex data
- up to 8x faster inferencing over Cortex-M
- Up to 6x lower power for inferencing
- Dedicated **Math library** to accelerate matrix and vector lin algebra ops

Low-Power SoCs and Modules Optimized for Battery Powered IoT Mesh Devices

High Performance Radio

-Up to +19.5 dBm TX -97.6 dBm RX @ BLE 1 Mbps -105.7 dBm RX @ BLE 125 kbps -104.5 dBm RX @ 15.4 Improved Wi-Fi Coexistence RX Antenna Diversity

Low Power

5.0 mA TX @ 0 dBm 19.1 mA TX @ +10 dBm 4.4 mA RX (BLE 1 Mbps) 5.1 mA RX (15.4) 33.4 μA/MHz 1.3 μA EM2 with 16 kB RAM

World Class Software

Simplicity Studio 5 Matter¹ Thread¹ Zigbee¹ Bluetooth (1M/2M/LR) Bluetooth mesh Dynamic multiprotocol¹ Proprietary

ARM® Cortex®-M33

78 MHz (FPU and DSP) Trustzone® Up to 1536kB of Flash Up to 256kB of RAM

Dedicated Security Core Secure Vault[™] - Mid

Secure Vault[™] - High

Low-power Peripherals

EUSART, USART, I2C 20-bit ADC, 12-bit VDAC, ACMP Temperature sensor +/- 1.5°C 32kHz, 500ppm PLFRCO

AI/ML

AI/ML Hardware Accelerator

SoCs and Modules

5x5 QFN40 (26 GPIO) -125°C 6x6 QFN48 (28/32 GPIO) -125°C 7x7 SiP Module (+10 dBm) 12.9x15.0 PCB Module (+10 dBm)

¹Requires MG24

AI/ML on Silicon Labs' Wireless SoCs

EFR32 Series 2 and Wi-Fi SoCs

Higher Performance Platform

- ARM Cortex M33 (78 MHz)
- Improved radio performance
- Lower power (MCU active, TX/RX)

Improved Security

- Secure Vault Mid
- Secure Vault High (select OPNs)

Acceleration - MVP

- AI/ML acceleration
- Faster AoA/AoD calculation
- Math library (matrix and vector ops

AI Software

- TensorFlow Lite for Microcontroller with accelerated kernels in GSDK
- 3rd Party end-to-end tools

All Series 2 SoCs support ML

	EFR32xG24	SiWx917	xG24-DK2601B Developer kit
())	CORE OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR CONTR	Wifi 6 SiWx917	 Broad Range of Sensors 9-axis Inertial Sensor 2 Digital Microphones PIR sensor Pressure Sensor Relative Humidity and Temperatu Sensor UV and Ambient Light Sensor Hall-effect Sensor
ers	78MHz CortexM33 Al/ML accelerator 1.5MB / 256kB 2.4 GHz radio 20 dBm TX Power Secure Vault Low power	180MHz CortexM4 160 MHz NWP Al/ML accelerator Up to 8MB / 672kB 2.4 GHz radio 21 dBm TX Power PSA L2 Security Low power	 Ready to demonstrate ML Sample applications in GSDK Examples on GitHub Examples and tutorials in MLTK Many sample applications and deform partners Plug&Play Sensor extensions wit Sparkfun Qwiic

inge of Sensors

- Inertial Sensor
- al Microphones
- ensor
- re Sensor
- e Humidity and Temperature
- d Ambient Light Sensor
- ffect Sensor

demonstrate ML

- e applications in GSDK
- oles on GitHub
- ples and tutorials in MLTK
- sample applications and demos artners
- Play Sensor extensions with fun Qwiic

Common Machine Learning software and tools on our Wireless SoC portfolio

Use cases are dependent on RAM and wireless stack

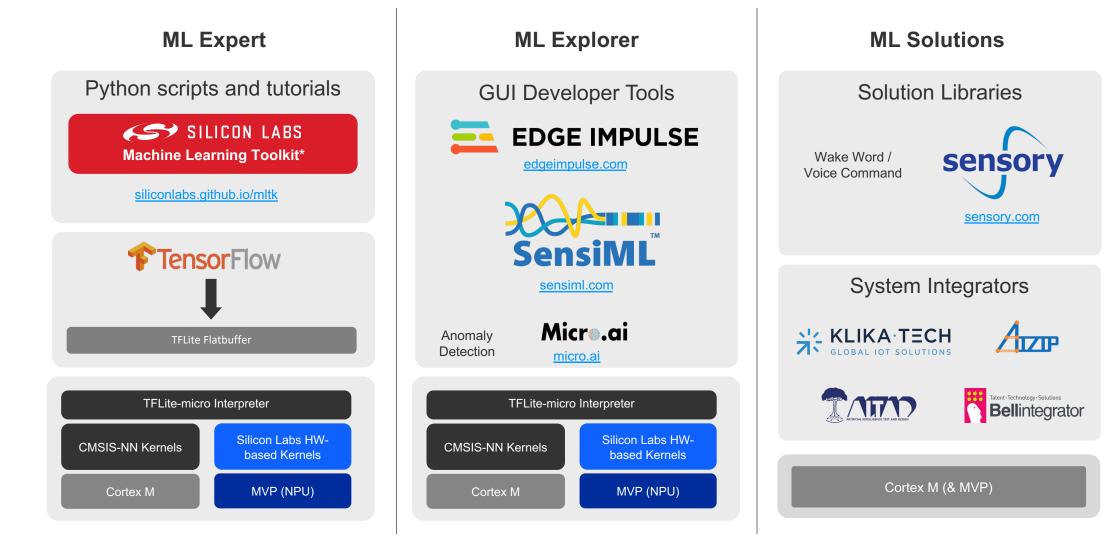
Benefits of the ML Hardware Accelerator

- Dedicated ML computing subsystem next to the CPU
- Optimized Matrix Vector Processor (MVP) to accelerate ML inferencing with a lot of processing power offloading the CPU
- Up to 8x faster inferencing over Cortex-M
- Up to 6x lower power for inferencing
- Dedicated OPNs for MVP accelerated parts \rightarrow EFR32MG24B[2]... or [3]

Power consumption (mJ) resnet v1 resnet v1 mobilenet v1 mobilenet v1 kws_duty_cycle_conv_m kws duty cycle conv m dsconv_arm dsconv arm 0 50 100 150 200 0 2 6 Δ CortexM With ML accelerator ■ CortexM With ML accelerator

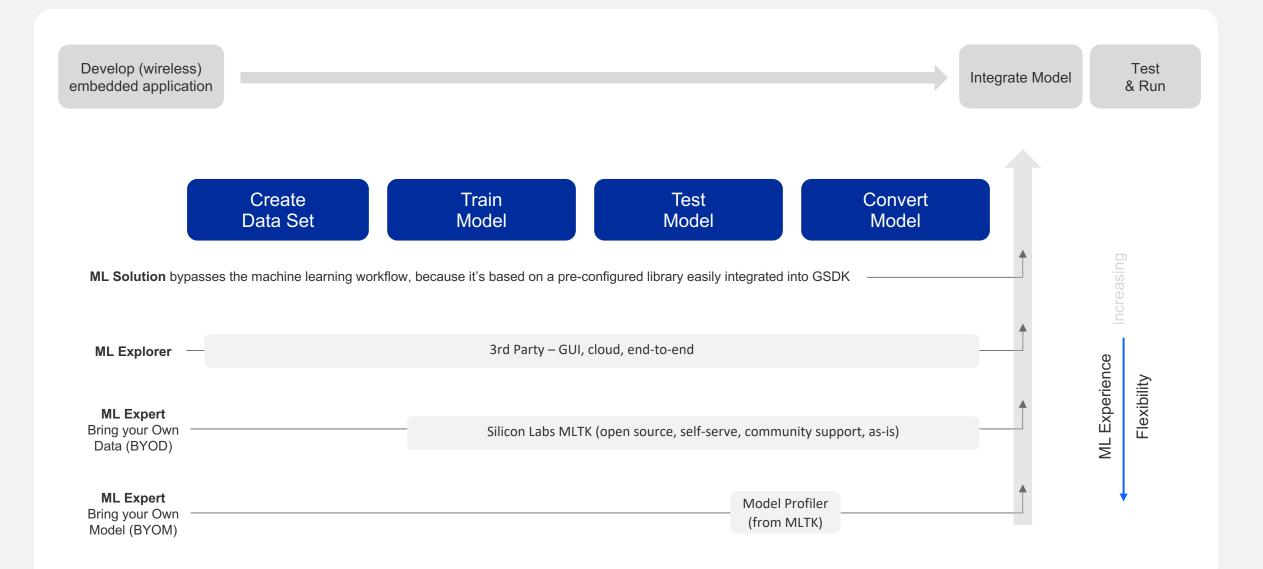
Inferencing with ML hardware accelerator vs. CortexM*

*Internal performance benchmarking with standard ML models. Results are for inferencing only (not for the complete application)



Inferencing time (s)

Machine Learning Tools


Software and Tool Support

*Machine Learning Toolkit is public but pre-alpha release

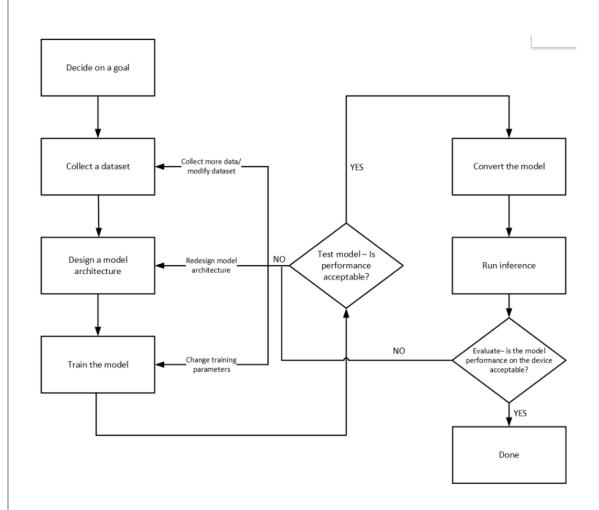
Embedded Development with Machine Learning (supervised)

Machine Learning Development Steps

Goal

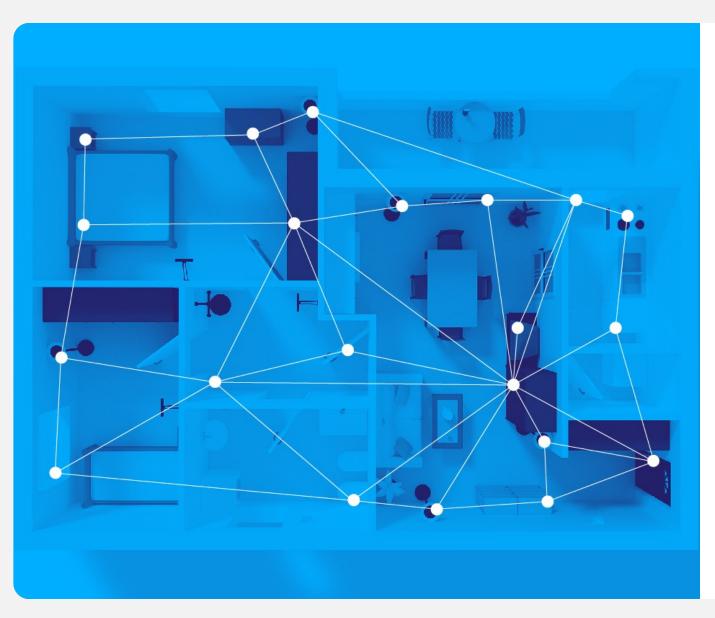
• What are you trying to achieve?

Collect a dataset


• Construct a dataset that you will use to train the model, some will be kept aside for testing the model.

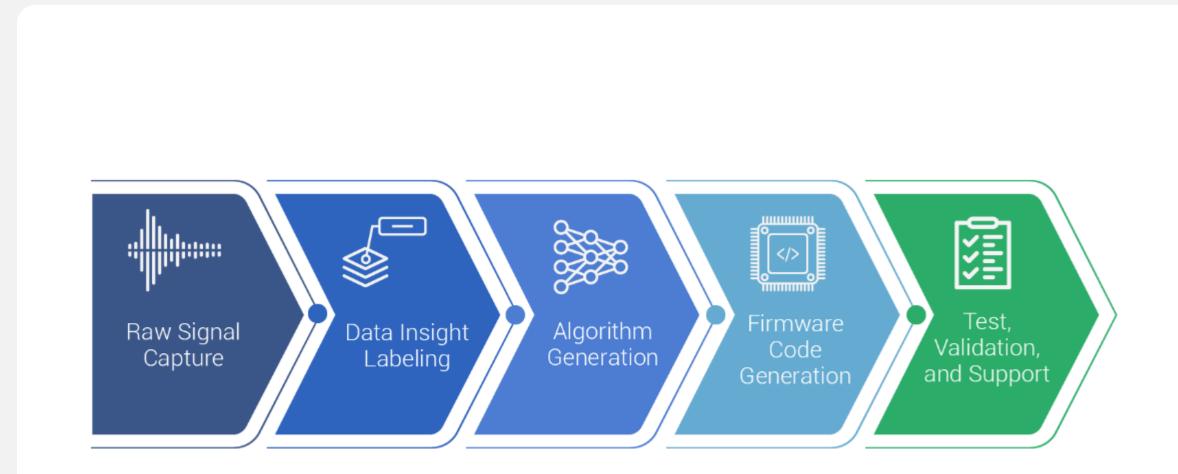
Design Model architecture

- It is not the raw data that is inputted into the model, it is the pre-processed data.
- Therefore, we must choose a pre-processing block that is relevant for the type of data we are dealing with.


Train the Model

- About 80% of the dataset should be used at this stage.
- the desired output is good predictions on generalized inputs.
- Need to avoid underfitting and overfitting.
- Test the Model
 - · check the performance of the model

Benefit of Adding Bluetooth LE


- Is a long range, high data rate, low latency wireless technology that has become ubiquitous.
- Has become the 'defacto' means of provisioning a device.
- Is very useful in particular in ML-based applications where we expect it can support the training of a model in the field, as well as local data access where necessary.
- BLE Mesh is used in some applications as the primary bearer in Industrial space today, and thus provides a cost-effective option for a ML sensor application where perhaps 15.4 is not proscribed.

Machine Learning Demonstration

Example ML Process – SensiML

Example ML Process

DC	siML [™] Analytics Studio +		G 🖻 🛛 🛛 🖉		- 0 ×
🛿 SiLabs Links 📋 Silabs Internal 🚺 Silabs N	Aiscell 📜 SiLabs KB 📒 Security Info 🚞 SiLabs Training 📜 Software Dev 🚞 Other 📀 RAIL: RAIL Library 🛹 Micri	um Document 🚮 duel 🕥 Gecko Bootloade	er 🧀 Search Results Sili 🧀 Knowledge Base - B	🕞 psd 🔛 News / Blog	5 »
	6 results for all repositories matching xg24 sorted by last updated	Clear filter			*
	sensiml_xG24_dual_audio_imu_capture Public				
	Example of dual IMU and Audio recognition				
	● C ☆ 2 ♀ 2 ⊙ 1 1 Updated on Sep 16, 2022				
	sensiml_xG24_recognition_dual_IMU_audio (Public)				
	Recognition app that uses both IMU and audio sensor data				
	●C ☆ 1 4型 BSD-3-Clause ¥ 2 ⊙ 0 1 0 Updated on Sep 14, 2022				
	SensiML_xG24_Microphone_Recognition Public				
	Example of using Sensiml tools to build a microphone recognition app for the Silicon Labs xG24 demo board				
	● C ☆ 0 ♀ 0 ⊙ 0 1 0 Updated on Aug 25, 2022				
	SensiML_xG24_IMU_Recognition (Public)				
	Example app for the Silicon Labs xG24 to recognize up/down and side/side				
	● C ☆ 0 ♀ 0 ⊙ 0 1 1 Updated on Apr 27, 2022				
	SensiML_xG24_Microphone_Capture Public				
	Project to demonstrate capturing microphone data on an XG24				
	● C ☆ 0 ♀ 0 ⊙ 0 1 0 Updated on Apr 27, 2022				
	SensiML_xG24_IMU_Capture Public				
	App to capture accelerometer and gyroscope data from xG24 dev board				
	● C ☆ 0 ♀ 0 ① 0 \$1 0 Updated on Apr 27, 2022				

Summary & Resources

Machine Learning Development Kit

xG24-DK2601B Dev Kit (on MG24)

- Wireless SoC with multi-protocol radio
- ARM® Cortex-M33 with TrustZone, 256 kB RAM and 1536 kB Flash, 80 MHz
- AI/ML Hardware Accelerator
- Broad Range of Sensors
 - 9-axis Inertial Sensor
 - 2 Digital Microphones
 - Pressure Sensor
 - Indoor Air Quality and Gas Sensor
 - Relative Humidity and Temperature Sensor Si7021
 - UV and Ambient Light Sensor
 - Hall-effect Sensor Si7210
- <u>https://www.silabs.com/development-tools/wireless/efr32xg24-dev-kit</u>

Resources

Demos Available:

<u>SensiML Predictive Maintenance Demo</u>

Silicon Labs AI/ML Resources:

- <u>ML Web Landing Page</u>
- <u>ML Doc Landing Page</u>
- Machine Learning Fundamentals

Partners' Resources:

- Edge Impulse
- <u>SensiML</u>
- MicroAl

Join Us Next Month

FEB 23 RD	ML in Predictive Maintenance and Safety Applications
MAR 23 RD	Unboxing: What's New With Bluetooth
APR 20 [™]	What's New with Bluetooth Mesh 1.1
MAY 18 [™]	Bluetooth Portfolio: What's Right for Your Application
JUN 15 [™]	The Latest in HADM With Bluetooth LE

Bluetooth LE Workshops

Attend an in-person workshop that will enable you to quickly develop an IoT product leveraging Bluetooth LE

- Free MG24 Multiprotocol Explorer Kit
- Locations and dates in the US, Canada, and Europe now through June
- Customized workshops for smart home, industrial, healthcare, and consumer applications

Sign up here

Thank You

BLUETOOTH SERIES

Watch ON DEMAND