
AN1011: Standalone Programmer via the
SWD Interface

This application note describes a standalone programmer to program the
internal flash and user page of EFM32 Gecko, Series 0 and 1, EZR32 Ser-
ies 0, and EFR32 Wireless Gecko Series 1 devices that use the Serial
Wire Debug (SWD) interface.
Details on how to use the SWD interface to program device can be found in AN0062: Programming
Internal Flash over the Serial Wire Debug Interface. This document focuses on how to optimize the
process when programming the devices.

The objectives of a standalone programmer are low cost, easy to build, simple to use and no PC
connection is required.

For simplicity, EFM32 Wonder Gecko, Gecko, Giant Gecko, Leopard Gecko, Tiny Gecko, Zero
Gecko, and Happy Gecko are a part of the EFM32 Gecko Series 0.

EZR32 Wonder Gecko, Leopard Gecko, and Happy Gecko are a part of the EZR32 Wireless MCU
Series 0.

EFM32 Pearl Gecko and Jade Gecko (and future devices) are a part of the EFM32 Gecko Series 1.

EFR32 Blue Gecko, Flex Gecko, and Mighty Gecko are a part of the EFR32 Wireless Gecko Series
1.

KEY POINTS

• The Serial Wire Debug (SWD)
interface is a two-wire
interface used by Silicon Labs
EFM32 Gecko, EZR32, and
EFR32 Wireless Gecko
devices.

• The programmer writes
directly to the target device
Memory System Controller
(MSC) registers over the SWD
interface.

• Future Silicon Labs EFM32/
EFR32/EZR32 devices can be
easily added to the
programmer.

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1

1. Hardware Overview

The standalone programmer reads binary data from a Mass Storage Device (MSD) and stores it to the external EBI NAND Flash or SPI
NOR Flash for device programming. The programmer uses GPIO to emulate the Serial Wire Debug (SWD) interface to program the
target device. The user interface is handled by push buttons, LEDs and LCD module.

External Memory
NAND/NOR Flash

Mass Storage
Device (MSD)

LEDs and
LCD Module

Push Buttons

Standalone
Programmer

PC Terminal
Program

USB

EBI/SPI

UARTGPIO & SPI

GPIO Target Device
with SWD
Interface

GPIO

Figure 1.1. Block Diagram of Standalone Programmer

1.1 Hardware Platform

There is a compile option to select the hardware platform for the standalone programmer. The programming firmware supports two
hardware topologies: one which is based on the STK boards, and the other which is based on a custom hardware design. These are
described in the following sections.

This package can be found on the Silicon Labs website (www.silabs.com/32bit-appnotes) or within Simplicity Studio using the [Applica-
tion Notes] tile.

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 1

https://www.silabs.com/32bit-appnotes

1.1.1 EFM32 STK

The EFM32GG_STK3700 and EFM32WG_STK3800 can be used as the EFM32 STK hardware platform of the standalone program-
mer.
• Handy, plug and run: no host PC is required.
• On board SEGGER JLink debugger and USB virtual COM port (CDC).
• Supports USB host, and MCU can run up to 48 MHz.
• Onboard 32 MB NAND Flash can be used to store the binary image.
• The upper 512 KB internal flash of EFM32GG990F1024 on EFM32GG_STK3700 can also be used as cache to speed up the pro-

gramming process.
• Minimal hardware is required to build the programmer.

Table 1.1. Resources of EFM32 STK Used by Programmer

GPIO Signal Function

PB9 UIF_PB0 Push button 0 (PB0)

PB10 UIF_PB1 Push button 1 (PB1)

PB13 HFXTAL_P 48 MHz crystal

PB14 HFXTAL_N 48 MHz crystal

PB15 NAND_PWR_EN NAND flash power enable

PC1 NAND_ALE NAND flash address latch enable

PC2 NAND_CLE NAND flash command latch enable

PD13 NAND_WP# NAND flash write protect

PD14 NAND_CE# NAND flash chip enable

PD15 NAND_R/B# NAND flash ready/busy

PE0 (UART0#1) EFM_BC_TX Serial port TX (optional)

PE2 UIF_LED0 LED0

PE3 UIF_LED1 LED1

PE8-15 NAND_IO0-7 NAND flash 8 bit data bus

PF0 DBG_SWCLK Debug SWCLK

PF1 DBG_SWDIO Debug SWDIO

PF5 EFM_USB_VBUSEN USB 5V VBUS enable

PF6 EFM_USB_OC_FAULT USB over current detect (optional)

PF7 EFM_BC_EN Virtual COM port enable (optional)

PF8 NAND_WE# NAND flash write enable

PF9 NAND_RE# NAND flash read enable

PF10 EFM_USB_DM USB D-

PF11 EFM_USB_DP USB D+

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 2

The 20-pin expansion header (P100) of EFM32 STK is used to connect target device and optional SPI LCD module.

Table 1.2. Expansion Header for External Hardware and Target Device

Expansion Header Pin Number Signal Function

1 GND Target device GND

2 VMCU Target device VDD

4 PD0 (USART1#1) SPI LCD module MOSI (optional)

6 PD1 (USART1#1) SPI LCD module MISO (optional)

7 PC4 Target device SWCLK

8 PD2 (USART1#1) SPI LCD module CLK (optional)

9 PC5 Target device SWDIO

12 PD4 Target device RESET

13 PB12 SPI LCD module RESET (optional)

16 PD6 SPI LCD module CS (optional)

20 3V3 SPI LCD module backlight supply (optional)

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 3

1.1.2 Customized Hardware

Alternatively, the EFM32WG332F64/128/256 and EFM32GG332F1024 devices can be used on a custom hardware platform to imple-
ment the standalone programmer.
• PCB layout is required.
• Supports USB host, and MCU can run up to 48 MHz.
• Low pin count 4 MB SPI NOR Flash can be used to store the binary image.
• The upper 512 KB internal flash of EFM32GG332F1024 can be used as a cache to speed up the programming process.
• Supports the option to configure it as a gang programmer to program up to 4 or 8 devices sequentially.

Table 1.3. Pin Assignments of Customized Hardware

GPIO Signal Function

PA4 TARGET_SWC Target device SWCLK

PA5 TARGET_SWD Target device SWDIO

PB7 LFXTAL_P 32768 Hz crystal (reserve)

PB8 LFXTAL_N 32768 Hz crystal (reserve)

PB13 HFXTAL_P 48 MHz crystal

PB14 HFXTAL_N 48 MHz crystal

PC0 (I2C0#4) I2C_SDA I2C interface (reserve)

PC1 (I2C0#4) I2C_SCL I2C interface (reserve)

PC2 (USART2#0) UART_TX Serial port TX (optional)

PC3 (USART2#0) UART_RX Serial port RX (reserve)

PC4 TARGET_RESET Target device RESET

PC6 GANG4_SELECT Select x4 gang programmer mode

PC7 GANG8_SELECT Select x8 gang programmer mode

PC8 UIF_PB0 Push button 0 (PB0)

PC9 UIF_PB1 Push button 1 (PB1)

PD0 (USART1#1) FLASH_MOSI SPI Flash MOSI

PD1 (USART1#1) FLASH_MISO SPI Flash MISO

PD2 (USART1#1) FLASH_CLK SPI Flash CLK

PD3 (USART1#1) FLASH_CS SPI Flash CS

PD5 MUX_A MUX select A

PD6 MUX_B MUX select B

PD7 MUX_C MUX select C

PD8 MUX_OE MUX output enable

PE9 LCD_RESET SPI LCD module RESET

PE10 (USART0#0) LCD_MOSI SPI LCD module MOSI

PE11 (USART0#0) LCD_MISO SPI LCD module MISO

PE12 (USART0#0) LCD_CLK SPI LCD module CLK

PE13 (USART0#0) LCD_CS SPI LCD module CS

PE14 UIF_LED0 LED0

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 4

GPIO Signal Function

PE15 UIF_LED1 LED1

PF0 DBG_SWCLK Debug SWCLK

PF1 DBG_SWDIO Debug SWDIO

PF2 USB_OC_FAULT USB over current detect (optional)

PF5 USB_VBUSEN USB 5V VBUS enable

PF10 USB_DM USB D-

PF11 USB_DP USB D+

The reference schematic of the customized hardware platform is in the “sch” folder of this application note software package.

1.2 Memory for Binary Image Storage

There is a compile option to select EBI NAND flash or SPI NOR flash for the binary image storage.

1.2.1 EBI NAND Flash

The on board NAND256W3A NAND flash is organized as 512 bytes per page, 32 pages (16 KB) per block, with the total memory size
of 2048 blocks (32 MB). The NAND flash is accessed by the External Bus Interface (EBI) of EFM32GG or EFM32WG.

If the binary image is not a multiple of the flash page size (512 bytes), the remaining bytes are padded with 0xFF to keep the program
image aligned with the flash page.

Table 1.4. EBI NAND Flash Memory Map

Data Block Page Size Remark

Main flash image 0 – 127 0 – 4095 2048 kB Maximum 1 MB for existing micro-
controller

Reserve for future expansion 128 – 2042 4096 – 65375 30640 kB Reserve for future microcontroller >2
MB

User flash image 2043 65376 – 65407 16 kB Maximum 2 KB for existing micro-
controller

Main flash program information 2044 65408 – 65439 16 kB File name, Start address and Lock
selection

Main flash image information 2045 65440 – 65471 16 kB Main flash image size and CRC16

User page program information 2046 65472 – 65503 16 kB File name and Start address

User page image information 2047 65504 – 65535 16 kB User page image size and CRC16

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 5

1.2.2 SPI NOR Flash

The selected SPI NOR flash is organized as 256 bytes per page, 4 KB (16 pages) per sector, 64 KB per block and total memory size is
1024 sectors or 64 blocks (4 MB). The SPI flash must support 4 KB sector erase on the entire device, for example, the Macronix
MX25L3206E or Cypress/Spansion S25FL132K. The SPI NOR flash is accessed by the SPI interface (USART) of EFM32GG or
EFM32WG.

If the binary image is not a multiple of the flash page size (256 bytes), the remaining bytes are padded with 0xFF to keep the program
image aligned with the flash page.

Table 1.5. SPI NOR Flash Memory Map

Data Address Size Remark

Main flash image 0x00000000 – 0x001FFFFF 2048 kB Maximum 1024 kB for existing microcontroller

Reserve for future expansion 0x00200000 – 0x003FCFFF 2036 kB Reserve for future microcontroller >2 MB

User flash image 0x003FD000 – 0x003FEFFF 8 kB Maximum 2 kB for existing microcontroller

Main flash program information 0x003FF000 – 0x003FF3FF 1 kB File name, Start address and Lock selection

Main flash image information 0x003FF400 – 0x003FF7FF 1 kB Main flash image size and CRC16

User page program information 0x003FF800 – 0x003FFBFF 1 kB File name and Start address

User page image information 0x003FFC00 – 0x003FFFFF 1 kB User page image size and CRC16

1.2.3 Cache

To eliminate the read access from external memory, the programmer uses internal flash memory on the MCU to cache the main flash
image from external memory if the image size is less than or equal to 512 kB.

This feature is available on a programmer equipped with 1 MB flash EFM32 Giant Gecko. The lower 512 kB flash is used for the pro-
grammer firmware whereas the upper 512 kB flash is available for the target firmware image cache.

1.3 USB Interface

The EFM32 is configured as a USB Host and is designed to communicate with a Mass Storage Device (MSD) USB class (e.g. memory
stick).

1.4 LCD Module

The selected LCD module should be controlled by SPI and operated on 3.3 V. The current implementation is 4 x 20 dot matrix LCD
module with a Solomon Systech SSD1803 LCD controller and driver.

1.5 Serial Port

When DEBUG_USB_API is turned on and USER_PUTCHAR is defined, useful debugging information will be output on the serial port. Compil-
ing with the DEBUG_EFM_USER flag will also enable all asserts in both emlib and in the USB stack. If asserts are enabled and USER_PUTCH
AR defined, assert texts will be output on the serial port.

The serial port can also be used as a display interface when the LCD module is not available. The serial TX data is routed to the STK
virtual COM port by setting the EFM_BC_EN line high.

1.6 Gang Programmer Mode

The gang programmer mode is available when using a custom hardware platform design. The DIP switch is used to select x1, x4 or x8
operation mode. Four 1-of-8 FET Multiplexers (for example, Texas Instruments SN74CB3Q3251) are used to route the required signals
to different sockets for target device programming.

AN1011: Standalone Programmer via the SWD Interface
Hardware Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 6

2. Software Overview

This section covers the software drivers required for the standalone programmer.

The related software modules are found under the Simplicity Studio installation path. Example default locations on Windows for Simplic-
ity Studio V3.3 are:

C:\SiliconLabs\SimplicityStudio\v3\developer\sdks\efm32\v2\usb\src

C:\SiliconLabs\SimplicityStudio\v3\developer\sdks\efm32\v2\kits\common\drivers

C:\SiliconLabs\SimplicityStudio\v3\developer\sdks\efm32\v2\reptile\fatfs

C:\SiliconLabs\SimplicityStudio\v3\developer\sdks\efm32\v2\kits\EFM32GG_STK3700\examples\nandflash

2.1 USB Host

The programmer uses the USB host stack in the “usb\src” directory and the MSD modules in the “drivers” directory to implement
support for Mass Storage Device.

The FAT support for MSD is provided by fatfs in the “reptile\fatfs” directory.

2.2 LCD Module

The SPI LCD driver is used to retarget the printf() function to the LCD module and the retargetio.c file resides in the “drivers”
directory is required.

2.3 Serial Port

The serial port driver is modified from the retargetserial.c file in “drivers” directory. It is used to retarget the printf() function to
the serial TX. The retargetio.c file resides in the “drivers” directory is required.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 7

2.4 Upload Image

The programmer acts a USB host that can connect to a Mass Storage Device (MSD) such as a memory stick. The programmer search-
es for a “proginfo.txt” file in the root directory of the USB MSD which contains the filename of the binary image. The programmer
then opens the binary file in root directory and reads the firmware image from the MSD and copies it to the external memory and cache
(if available) for programming the target device.

The NAND flash driver is modified from the “nandflash” example of the EFM32GG_STK3700 STK.

The SPI NOR flash driver is used to erase the flash page, read data from the flash page and write data to the flash page.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 8

Upload image start

Timeout?Valid USB MSD?

Proginfo.txt &
corresponding binary file

in USB MSD?

Upload image from
USB MSD to external

memory

External memory
& cache (if available)

image checksum
verify OK?

Wait key press to
exit or continue

USB MSD remove?

Upload image end

USB MSD plug in?

Upload image end

Save image from
external memory to
cache (if available)

Save program and
file information to
external memory
Wait key press to
exit or continuue

NO

NO

YES

NO

YES
YES

NO
NO

YES

YES

NO

YES

Figure 2.1. Upload Image Flowchart

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 9

2.5 Program Target Device

There are two main strategies that can be used when programming the target device. The first option is to write directly to the target
device’s Memory System Controller (MSC) registers over the Serial Wire Debug (SWD) interface.

The second option is to first write a program directly to target device’s RAM and then let this program control the MSC registers. Such a
program is called a flash-loader.

Program by writing directly to MSC registers is chosen in this application note since this method is simple and easy to upgrade to sup-
port new target devices. Through optimizations on flash erase and write operations, the program speed is close to the flash-loader ap-
proach.

See "AN0062: Programming Internal Flash over the Serial Wire Debug Interface” for more information on how to access the debug
interface of the target device and how to use this interface to program devices.

2.5.1 Bit-Bang

The major overhead on writing directly to MSC registers method is to emulate the SWDIO and SWCLK signals by bit-banging GPIO
pins. In order to speed up this process, the GPIOs of SWCLK and SWDIO for the target device must on the same GPIO port group (0-7
or 8-15). The target RESET line and other signals should not be connected to this port since the software writes to the entire port at
once when bit-banging the SWCLK and SWDIO signals.

The functions readMem() and writeMem() in utils.c source file are used to read or write one 32-bit word from or to the target device’s
registers or memory.

Table 2.1. Read and Write on Accessing Target Device Register or Memory

Function Simplicity IDE Optimization –O0 Simplicity IDE Optimization –O3

readMem() 170.9 – 177.8 µs 64.6 - 66.5 µs

writeMem() 101.8-102.3 µs 29.8 – 30 µs

2.5.2 Flash Erase

There are three ways to erase the flash of the target device:

Page Erase
• A page erase can be initiated from software using ERASEPAGE in MSC WRITECMD register. The page erase operations require

that the address is written into the MSC ADDRB register.

Mass Erase (Not Supported on EFM32 Gecko and EFM32 Tiny Gecko)
• A mass erase can be initiated from software using ERASEMAIN0 and ERASEMAIN1 in MSC WRITECMD register. The ERASE-

MAIN0 is to erase the entire flash or lower half of the flash if device supports read-while-write. The ERASEMAIN1 is to erase the
upper half of the flash if device supports read-while-write.

Device Erase
• Device erase is issued over the Authentication Access Port (AAP) interface and erases all flash, SRAM, the Lock Bit (LB) page, and

the User data page Lock Word (ULW). This method is not used in this application note.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 10

Table 2.2. Device Flash Organization and Erase Timing

Device Max Flash
Size (kB)

Flash Page
Size (Bytes)

User Page
Size (Bytes)

Page Erase Page Erase Time MassErase Mass Erase-
Time

EFM32G 128 512 512 Y 20 - 20.8 ms (1 page)

5.12 – 5.32 s (device)

N NA

EFM32TG 32 512 512 Y 20 - 20.8 ms (1 page)

1.28 – 1.33 s (device)

N NA

EFM32ZG 32 1024 1024 Y 20 - 20.8 ms (1 page)

0.64 – 0.66 s (device)

Y 20 - 20.8 ms

EFM32HG

EZR32HG

64 1024 1024 Y 20 - 20.8 ms (1 page)

1.28 – 1.33 s (device)

Y 20 - 20.8 ms

EFM32LG
EFM32WG

EZR32LG
EZR32WG

256 2048 2048 Y 20 - 20.8 ms (1 page)

2.56 – 2.66 s (device)

Y 20 - 20.8 ms

EFM32GG 1024 4096 2048 Y 20 - 20.8 ms (1 page)

5.12 – 5.32 s (device)

Y 20 - 20.8 ms
Per 512 KB

EFM32JG
EFM32PG
EFR32xG

256 2048 2048 Y 20 – 40 ms (1 page)

2.56 – 5.12 s (device)

Y 20 – 40 ms

The flash erase timing (page and mass erase) is grouped into two categories.
• Page and mass erase time is 20-20.8ms

EFM32 Gecko Series 0 and EZR32 Series 0 devices (variable newFamily = false).
• Page and mass erase time is 20-40ms

EFM32 Gecko Series 1 and EFR32 Wireless Gecko Series 1 devices (variable newFamily = true).

To reduce time for flash erase process, the programmer should avoid erasing the target main flash page by page especially for devices
with larger flash memories and smaller page sizes. The EFM32 Gecko and EFM32 Tiny Gecko do not support mass erase so their
device flash erase operation is time consuming.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 11

Flash erase start

Erase flash page by
page

Flash erase end

Flash erase end

Binary image >512 KB?

Use ERASEMAIN1 to
erase upper 512 KB

Use ERASEMAIN0 to
erase entire flash or

lower 512 KB

Enable double writes if
target is GG

NO

YES

NO

YES

Start address != 0 or
Target device is G/TG?

Figure 2.2. Flash Erase Flowchart

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 12

2.5.3 Combine Bootloader with Application Binary File

The mass erase can only be used on an application binary image with start address equal to 0x00000000.

There are cases the program start address is not 0x00000000 and the time-consuming page erase process must be used.

• Keep the pre-programmed bootloader and program the application firmware on a flash page size boundary address.
• Program the bootloader at 0x00000000, then program the application firmware on a flash page size boundary address.

The solution is to combine the bootloader and application firmware into one binary file so the program start address can be set to
0x00000000 for mass erase.

To achieve this, it needs a tool called Simplicity Commander, installed along with Simplicity Studio in a subfolder of the install folder (C:
\SiliconLabs\SimplicityStudio\v3\SimplicityCommander). See UG162: “Simplicity Commander Reference Guide” for more infor-
mation.

Extract the Simplicity Commander from Commander_pkg_0.14.0.zip to the current folder or another folder (e.g. C:\SiliconLabs\Simp
licity Commander) to execute the command line interface.

Connect any EFM32 STK with enough flash memory for the bootloader firmware to a PC, invoke the Command-Line Interface (CLI) of
Simplicity Commander. To execute the command of Simplicity Commander, start a Windows command window and change to the Sim-
plicity Commander directory (e.g. C:\SiliconLabs\Simplicity Commander).

For simplicity, put all related binary files in the Simplicity Commander directory and execute a mass erase for the device on the STK.

> commander device masserase

Flash the bootloader image (e.g. bootloader-giantgecko.bin from AN0003) to the target device, starting at 0x00000000.

> commander flash bootloader-giantgecko.bin --address 0x0

Read the flash contents from 0x0 to the start address of the application firmware (e.g. 0x1000, which must align with a target device
flash page size boundary) and store it to a binary file (e.g. giantbl4k.bin).

The address range is non-inclusive, meaning that all bytes from 0x0 up to and including 0xFFF are read out.

> commander readmem –-range 0x0:0x1000 --outfile giantbl4k.bin

The entire flash was erased before program the bootloader image so the gap between bootloader and application firmware is filled with
0xFF.

Use the MSDOS copy command to combine output binary file (giantbl4k.bin) and application firmware (e.g. giantapp.bin).

> copy giantbl4k.bl.bin/b + giantapp.bin/b ggblapp.bin/b

The combined binary file (ggblapp.bin) can now be used for device programming with program start address at 0x00000000.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 13

Figure 2.3. Use Simplicity Commander to Combine Bootloader and Application Binary File

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 14

2.5.4 Flash Write

The write operation requires the address to be written into the MSC ADDRB register. After each 32 bit word is written, the internal ad-
dress register will be incremented automatically by 4 (except EFM32 Gecko family). When a word is written to the MSC WDATA regis-
ter, the WDATAREADY bit of the MSC STATUS register is cleared. When this status bit is set, software can write the next word.

The EFM32 Giant Gecko devices have the ability to do double writes to the flash. This is enabled by setting the WDOUBLE bit in the
MSC WRITECTRL register, and only has effect on the main pages of the flash. When double writes are enabled, MSC WDATA accepts
two 32-bit words before a flash write is started.

Table 2.3. Device Flash Write Features and Timing

Device Max Flash Size (kB) Auto Address In-
crement

Double Words (64
bit) Write

Write Time (32/64
bit word)

Total Write Time

EFM32G 128 N N
20 µs (min) 0.66 s

EFM32TG 32 Y N 20 µs (min) 0.16 s

EFM32ZG 32 Y N 20 µs (min) 0.16 s

EFM32HG

EZR32HG

64 Y N 20 µs (min) 0.33 s

EFM32LG
EFM32WG

EZR32LG
EZR32WG

256 Y N 20 µs (min) 1.31 s

EFM32GG 1024 Y Y (Main flash only) 20 µs (min) 5.24 s (32 bit word)

2.62 s (64 bit word)

EFM32JG
EFM32PG EFR32xG

256 Y N 20 – 40 µs 1.31 – 2.62 s

The flash write timing can be grouped into two categories.
• Flash write time is 20 µs minimum

EFM32 Gecko Series 0 and EZR32 Series 0 devices (variable newFamily = false).
• Flash write time is 20-40 µs

EFM32 Gecko Series 1 and EFR32 Wireless Gecko Series 1 devices (variable newFamily = true).

To reduce the time for the flash write process, the programmer should try to skip polling the WDATAREADY bit in MSC STATUS regis-
ter after writing each 32- or 64-bit word since the register read process is time consuming (~65 µs). The alternative is to add a fixed
micro second delay between each write to make sure the maximum write time can be met. The EFM32 Gecko family does not support
auto address increment so it needs to load new address into the MSC ADDRB register prior to writing each 32 bit word.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 15

Flash write start

Target flash page
boundary?

Target is
EFM32G
family?

Load new page
address to target

Cache available?

Read one external
memory page to

buffer

Write one word or two words
(if target is GG) from buffer

or cache to target

External flash page
boundary?

Skip polling?

External flash page
boundary?

Cache available?

Read one external
memory page to

buffer

Load new word
address to target

Zero or few µs delay

WDATAREADY?

End of binary image?

Flash write end

YES

NO

YES

NO

YES

NO

NO

YESYES

NO

NO

YES

YES

NO

YES

NO

YES

NO

Figure 2.4. Flash Write Flowchart

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 16

2.5.5 Flash Verify

The programmer verifies the target flash contents with external memory or cache (if available) to make sure that no errors occurred
during the programming process. The auto increment of Transfer Address Register (TAR) is for burst read within TAR wrap around
boundary, the TAR must be initialized at every TAR wrap boundary to setup the next flash read address.

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 17

Flash verify start

TAR wrap boundary?

Initialize new TAR

Cache available?

Read one external
memory page to

buffer

Read one word from
target and compare
with buffer or cache

External flash page
boundary?

Content match?

End of binary image?

Flash verify end

Set autoincrement
on TAR

Reset autoincrement
on TAR

Display error
message

NO

YESYES

NO

NO

YES

NO

YES

NO

YES

Figure 2.5. Flash Verify Flowchart

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 18

2.5.6 Debug Access and Authentication Access Port (AAP) Access Lock

The debug access to the Cortex core is locked by clearing the Debug Lock Word (DLW, word 127) in the Lock Bits page and resetting
the device. When debug access is locked, the debugger can access the AAP registers. However, the connection to the Cortex core and
the whole bus system is blocked.

The AAP access is locked by clearing the Authentication Access Port (AAP) lock word (ALW, word 124) of the Lock Bits page. Once
the AAP is locked, it is impossible to perform an external mass erase and the AAP lock cannot be reset. The only way to program the
device when AAP is locked is through a bootloader or by software already loaded into the flash.

The lock feature can be grouped into two categories:
• Devices support debug access lock only

EFM32 Gecko Series 0 and EZR32 Series 0 devices (variable newFamily = false).
• Devices support debug access and AAP lock

EFM32 Gecko Series 1 and EFR32 Wireless Gecko Series 1 devices (variable newFamily = true).

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 19

2.6 Compile Options

The programmer has its corresponding header files to setup the software and hardware environment. The hardware environment is
configured by the header files as shown in the following table, whereas the software environment is configured by the progconf.h and
the related parameters shown in the next table.

Table 2.4. Header Files for Hardware Configuration

File Usage Default Value

lcddisplay.h Define the USART and GPIO to inter-
face with external LCD module

SeeTable 1.1 Resources of EFM32 STK Used by Programmer
on page 2, Table 1.2 Expansion Header for External Hardware
and Target Device on page 3 and Table 1.3 Pin Assignments of

Customized Hardware on page 4 for details

spiflash.h Define the USART and GPIO to inter-
face with external SPI flash

SeeTable 1.1 Resources of EFM32 STK Used by Programmer
on page 2, Table 1.2 Expansion Header for External Hardware
and Target Device on page 3 and Table 1.3 Pin Assignments of

Customized Hardware on page 4 for details

kits.h Define GPIO for keys, LEDs, SWD inter-
face and external MUX control

SeeTable 1.1 Resources of EFM32 STK Used by Programmer
on page 2, Table 1.2 Expansion Header for External Hardware
and Target Device on page 3 and Table 1.3 Pin Assignments of

Customized Hardware on page 4 for details

vcomdisplay.h Define GPIO for serial port SeeTable 1.1 Resources of EFM32 STK Used by Programmer
on page 2, Table 1.2 Expansion Header for External Hardware
and Target Device on page 3 and Table 1.3 Pin Assignments of

Customized Hardware on page 4 for details

Table 2.5. Parameters in progconf.h File for Software Configuration

Parameter Usage Default Setting

USE_EFM32_STK Use EFM32 STK or customized hardware for programmer
(FALSE for customized hardware, TRUE for EFM32 STK)

TRUE

TEXT_FILENAME Define the text file name that provides the information to program
the device

proginfo.txt

EXTERNAL_MEMORY Select EBI NAND flash or SPI NOR flash (0 for SPI NOR FLASH,
1 for EBI NAND Flash)

1 (EBI_NAND_FLASH)

USB_WAIT_TIMEOUT Timeout in seconds to wait until USB MSD is plugged in 5

SKIP_POLLING Skip polling the WDATAREADY bit in MSC STATUS register after
writing data to target device flash (TRUE to skip)

TRUE

WRITE_DELAY Delay in micro seconds after writing data to target device flash
(only valid if SKIP_POLLING = TRUE)

10 if using EFM32GG

11 if using EFM32WG

LOCK_RESET_DELAY Pin reset delay after debug lock in milliseconds 1

ERASE_DELAY Delay in milliseconds after a flash page erase or mass erase 20

ERASE_LOOPCNT Loop count to poll the BUSY bit in the MSC STATUS register after
a flash page erase or mass erase

400 (>20 ms)

RESET_PULSE_WIDTH Pin reset pulse width in milliseconds 1

RESET_DELAY Pin reset delay in milliseconds 1

MUX_DELAY Delay in milliseconds after swithcing external MUX control pins in
gang programming mode

1

DISP_INTERFACE Select display interface ((0 for none, 1 for LCD, 2 for serial port) 2 (DISP_VCOM)

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 20

2.7 Add a New Silicon Labs EFM32/EFR32/EZR32 Device to the Programmer

The new Silicon Labs EFM32/EFR32/EZR32 device should have a Serial Wire Debug (SWD) interface with a Cortex-M0+, Cortex-M3
or Cortex-M4 core. The known differences between current EFM32/EFR32/EZR32 families are Chip Information (Family Code…) in the
Device Information (DI) page, the Memory System Controller (MSC) Base Address, the AAP Identification Register (IDR) value if debug
access is locked, the wrap boundary of the Transfer Address Register (TAR) on the AHB-AP, the flash erase timing (see Table
2.2 Device Flash Organization and Erase Timing on page 11 for details) and the flash write timing (see Table 2.3 Device Flash Write
Features and Timing on page 15 for details).

Table 2.6. Differences between Current EFM32/EFR32/EZR32 Families

Device Family Code MSC Base Address IDR Value (Lock/Unlock) Wrap Boundary of TAR

EFM32G 71 0x400C0000 0x16E60001/0x24770011 0xFFF

EFM32GG 72 0x400C0000 0x16E60001/0x24770011 0xFFF

EFM32TG 73 0x400C0000 0x16E60001/0x24770011 0xFFF

EFM32LG 74 0x400C0000 0x16E60001/0x24770011 0xFFF

EFM32WG 75 0x400C0000 0x16E60001/0x24770011 0xFFF

EFM32ZG 76 0x400C0000 0x16E60001/0x04770031 0x3FF

EFM32HG 77 0x400C0000 0x16E60001/0x04770031 0x3FF

EZR32WG 120 0x400C0000 0x16E60001/0x24770011 0xFFF

EZR32LG 121 0x400C0000 0x16E60001/0x24770011 0xFFF

EZR32HG 122 0x400C0000 0x16E60001/0x04770031 0x3FF

EFM32PG 81 0x400E0000 0x26E60011/0x24770011 0xFFF

EFM32JG 83 0x400E0000 0x26E60011/0x24770011 0xFFF

EFR32MG 16-18 0x400E0000 0x26E60011/0x24770011 0xFFF

EFR32BG 19-21 0x400E0000 0x26E60011/0x24770011 0xFFF

EFR32FG 25-27 0x400E0000 0x26E60011/0x24770011 0xFFF

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 21

If the differences in the new device are identified, the corresponding header files and source files should be modified to support the new
device. The parameters for software configuration in Table 2.5 Parameters in progconf.h File for Software Configuration on page 20
may need to be changed to adapt to the new device. The following table is an example showing how to add EFR32MG support to the
programmer.

Table 2.7. Header and Source Files Need to be Modified to Add a New Device

Item File Existing Define or Code Action

Family code util.h No define for EFR32MG

Add below defines to util.h

#define _DEVICE_FAMILY_EFR32MG1P 16
#define _DEVICE_FAMILY_EFR32MG1B 17
#define _DEVICE_FAMILY_EFR32MG1V 18

util.c

No code for EFR32MG

Note:

newFamily = false for

EFM32 Gecko Series 0 and EZR32 Series 0
devices

newFamily = true for

EFM32 Gecko Series 1 and EFR32 Wireless
Gecko Series 1 devices

Add EFR32MG support to getDeviceName()
function, use EFR32MG1P as an example

 case _DEVICE_FAMILY_EFR32MG1P:
 sprintf(familyCode, "%s", "EFR32MG
1P");
 mainPageSize = 2048;
 userPageSize = 2048;
 mainPageSizeMask = 0x7ff;
 setMscBaseAddrP2();
 newFamily = true;
 break;

MSC Base Ad-
dress util.h #define MSCBASE_ADDR_P1 0x400c0000

#define MSCBASE_ADDR_P2 0x400e0000
The MSCBASE_ADDR_P2 define can cover
EFR32MG

util.h

__STATIC_INLINE void setMscBaseAddrP1(
void)

__STATIC_INLINE void setMscBaseAddrP2(
void)

The setMscBaseAddrP2() function can cover
EFR32MG

IDR Value dap.h #define EFM32_AAP_ID_P1 0x16e60001
#define EFM32_AAP_ID_P2 0x26e60011

The EFM32_AAP_ID_P2 define can cover
EFR32MG

utils.c Used in checkIfMzeroIsLocked() and conne
ctToTarget() function

The checkIfMzeroIsLocked() function is on-
ly for Cortex-M0+ core

The connectToTarget() function can cover
EFR32MG (EFM32_AAP_ID_P2)

debug_lock.c Used in lockTarget() function The current lockTarget() function can cover
EFR32MG (EFM32_AAP_ID_P2)

Wrap Boundary
of TAR utils.h #define TAR_WRAP_4K 0xFFF

#define TAR_WRAP_1K 0x3FF
The TAR_WRAP_4K define can cover EFR32MG

utils.c No code for EFR32MG

Add EFR32MG support to getTarWrap() func-
tion on return TAR_WRAP_4K;

 case _DEVICE_FAMILY_EFR32MG1P:
 case _DEVICE_FAMILY_EFR32MG1B:
 case _DEVICE_FAMILY_EFR32MG1V:

Software Param-
eters progconfig.h

#if defined(_EFM32_GIANT_FAMILY)
#define WRITE_DELAY 10
#else
#define WRITE_DELAY 11
#endif

Current WRITE_DEALY can support EFR32MG

AN1011: Standalone Programmer via the SWD Interface
Software Overview

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 22

3. User Interface

3.1 Push Buttons

There are two push buttons, PB0 and PB1, on the programmer.

PB0:
• Scrolls down in main menu.
• Returns to main menu from submenu.

PB1:
• Executes the selected item.

3.2 LEDs

There are two LEDs, LED0 and LED1, on the programmer.

LED0:
• On if an error occurs.

LED1:
• On if the programmer is busy, indicating push buttons are ignored.

LED0 and LED1 are also used to display menu status if an LCD is not available for the programmer.

3.3 Display

There is compile option to select display interface for standalone programmer.

3.3.1 No Display

This is not recommended since the programmer status can only be indicated by LED0 and LED1.

3.3.2 External LCD Module

• For menu operation and display information when programming the device.
• Use the software driver to retarget printf() function to the LCD module.

Figure 3.1. LCD Display

AN1011: Standalone Programmer via the SWD Interface
User Interface

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 23

3.3.3 Serial Interface

• For debugging and menu operation if LCD is not available.
• USB to UART Bridge is not required if using EFM32GG or EFM32WG STK (onboard USB virtual COM port) as programmer.
• Use software driver to retarget printf() function to serial interface (115200 N 8 1).
• PC terminal software is required to display data from serial interface.

Figure 3.2. Serial Interface Display

AN1011: Standalone Programmer via the SWD Interface
User Interface

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 24

4. Operation Flow

4.1 Text File and Binary Image

The programmer retrieves the target binary image from a USB MSD and stores it to external memory (EBI NAND flash or SPI NOR
flash) for device programming.

The USB MSD must have a text file (default name is “proginfo.txt”) that provides related information for programmer to load the
binary file and program the device. The corresponding text (.txt) and binary (.bin) files must be stored in the root directory of the USB
MSD.

The content of a text file must be in the following formats:

<Main flash binary file name> <Flash start address> <Lock AAP or Debug access>

<User page binary file name> <User page address>

Long filename (LFN) is not supported on text and binary files. The address is in hexadecimal format (8 digits without “0x” prefix).

The following example text file programs “main flash only” from “mainprog.bin” at address “0x00000000” with “debug access lock”:

mainprog 00000000 Y

The following example text file programs “main flash only” from “mainprog.bin” at address “0x00000000” with “AAP lock”:

mainprog 00000000 A

The following example text file programs “user page” only from “userprog.bin” at address “0x0fe00000”:

userprog 0fe00000

The following example programs “main flash” from “mainprog.bin” at address “0x00001000” and “user page” from “userprog.bin” at
address “0x0fe00000” “without debug access lock”:

mainprog 00001000 N
userprog 0fe00000

4.2 Menu Operation

4.2.1 Main Menu

Press PB0 to scroll down, PB1 to select.

>Program Flash (LED0 and LED1 off if no LCD display)
 Upload Image (LED0 on and LED1 off if no LCD display)
 Erase Main Flash (LED0 off and LED1 on if no LCD display)
 Erase User Page (LED0 on and LED1 on if no LCD display)

AN1011: Standalone Programmer via the SWD Interface
Operation Flow

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 25

4.2.2 Program Flash Submenu

This menu displays the current valid binary image information in external memory. “S:” is the binary file size in bytes, and “C:” is the
binary file checksum (CRC16) in hexadecimal.

mainprog 00000000 N
S:524288 C:4196

Displays "No binary in memory" if no valid binary image is in external memory.

Press PB1 to program target, PB0 to return to main menu.

Displays the target device information, current process and LED1 turns on during operation.

EFM32GG990F1024
ERASE/PROG/VER MAIN

Displays the programing time and device count (#n) if no errors occurred during the operation.

Time:8.99s #1

Displays error message(s) if the programming fails, and also turns on LED0.

In gang programming mode, the four or eight target devices are programmed sequentially.

Press PB0 to program again, PB1 to return to main menu.

4.2.3 Upload Image Submenu

This menu starts by waiting for the user to plug the USB MSD device in.

Plug in USB MSD
Wait...

If a USB MSD is not detected within the timeout interval (default is 5 seconds), it will display an error code:

No device plug-in

Press PB1 to retry, PB0 to return to main menu.

Displays the binary image information similarly to the program flash submenu, if a valid binary file is successfully uploaded from USB
MSD to the external memory.

mainprog 00000000 N
S:524288 C:4196

Displays error message(s) if the upload image process fails.

Press PB1 to upload the image again, PB0 to return to main menu.

4.2.4 Erase Main Flash Submenu

This menu will display the target device information and turn LED1 on during the operation.

EFM32ZG222F32

Displays the following message if no error occurs during the main flash erase.

Erase Main done

Displays error message(s) and turns LED0 on if the erase main flash operation fails.

In gang program mode, the main flash of four or eight target devices are erased sequentially.

Press PB0 to erase main flash again, PB1 to return to main menu.

AN1011: Standalone Programmer via the SWD Interface
Operation Flow

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 26

4.2.5 Erase User Page Submenu

This menu displays the target device information and turns LED1 on during the operation.

EFM32ZG222F32

Displays the following message if no error occurs during the user page erase.

Erase User done

Displays error message(s) and turns LED0 on if the erase user page fails.

In gang program mode, the user page of four or eight target devices are erased sequentially.

Press PB0 to erase user page again, PB1 to return to main menu.

AN1011: Standalone Programmer via the SWD Interface
Operation Flow

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 27

5. Testing

5.1 Test Setup

The interconnection diagram used with the programmer is shown in the figure below. The programmer is the EFM32GG_STK3700 or
EFM32WG_STK3800 and the target device is EFM32 STK or EFR32 WSTK or EZR32 WSTK.

Programmer
VDD

Input_Pin

GPIO for SWDIO

GPIO for SWCLK

GPIO for RESET

Target Device

GND

VDD

SWDIO

SWCLK

RESET

GND

VDD

Figure 5.1. Programmer Connection Diagram

The corresponding signals on different target STK and WSTK are shown in the table below. The pin or pad location can be found in the
schematic and assembly drawing of the associated STK or WSTK

The target device on STK or WSTK is powered by the programmer so the power switch (the slide switch in the lower left corner of the
board) of STK or WSTK should be in the BAT position.

Table 5.1. Pins or Pads for Connection on Target STK and WSTK

Target Device STK or WSTK Signal Pin or Pad on STK or WSTK Main
Board Pad on WSTK Radio Board

EFM32_Gxxx_STK

EFM32GG_STK3700

EFM32LG_STK3600

EFM32TG_STK3300

EFM32WG_STK3800

GND

RESET

SWDIO

SWCLK

VDD

TP811

TP815

TP812

TP813

Pin 2 of P100 (EXP port)

NA

SLSTK3400A_EFM32HG

GND

RESET

SWDIO

SWCLK

VDD

Pin 3 of J102

TP400

Pin 7 of J102

Pin 5 of J102

Pin 2 of P100 (EXP port)

NA

AN1011: Standalone Programmer via the SWD Interface
Testing

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 28

Target Device STK or WSTK Signal Pin or Pad on STK or WSTK Main
Board Pad on WSTK Radio Board

EFM32ZG_STK3200

GND

RESET

SWDIO

SWCLK

VDD

Pin 3 of P801

Pin 10 of P801

Pin 2 of P801

Pin 6 of P801

Pin 1 of P801

NA

SLSTK3401A_EFM32PG

GND

RESET

SWDIO

SWCLK

VDD

Pin 3 of J102

TP154

Pin 7 of J102

Pin 5 of J102

Pin 2 of P100 (EXP port)

NA

SLWSTK620xA_EZR32LG

SLWSTK622xA_EZR32WG

GND

RESET

SWDIO

SWCLK

VDD

Pin 1 of P100 (EXP port)

Pin 1 of SW102

Pin 26 (P21) of J101

Pin 25 (P20) of J101

Pin 2 of P100 (EXP port)

TPJ13

TPJ17

TPJ1

TPJ2

TPJ11

SLWSTK6000A_EFR32MG

GND

RESET

SWDIO

SWCLK

VDD

Pin 1 of P100 (EXP port)

Pin 1 of SW102

Pin 7 (P26) of J102

Pin 5 (P24) of J102

Pin 2 of P100 (EXP port)

TPJ13

TPJ17

TPJ1

TPJ2

TPJ11

AN1011: Standalone Programmer via the SWD Interface
Testing

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 29

5.2 Test Results

The binary files for testing are saved in the “testbin” folder of this application note and the test results in the table below are based on
following conditions.
• SDK is EFM32 SDK v4.4.0
• Erase, program and verify main flash only
• Compile options of progconfig.h are set to default values (SKIP_POLLING = TRUE, WRITE_DELAY = 10 for

EFM32GG_STK3700 and WRITE_DELAY = 11 for EFM32GG_STK3800)
• Software is compiled with –O3 optimization (release build) in Simplicity IDE
• External memory is on board NAND flash, and internal cache is available on EFM32GG_STK3700

Table 5.2. Program Time for Different Target Devices

Target Device (STK or WSTK) Binary File
Name

Binary
File Size

Program in Bi-
nary File EFM32GG_STK3700 EFM32WG_STK3800

EFM32ZG_STK3200 efmzg32k 32 KB spaceinvaders 0.71s 0.74s

EFM32TG_STK3300 efmtg32k 32 KB emlcd 2.24s 2.26s

SLSTK3400A_EFM32HG efmhg64k 64 KB spaceinvaders 1.39s 1.43s

EFM32_Gxxx_STK efmg128k 128 KB emlcd 10.7s 10.33s

EFM32LG_STK3600

EFM32WG_STK3800
efm256k 256 KB emlcd 5.47s 5.62s

EFM32GG_STK3700 efm512k 512 KB emlcd 8.99s 9.34s

EFM32GG_STK3700 efm1024k 1024 KB emlcd 18.38s 18.69s

SLWSTK620xA_EZR32LG

SLWSTK622xA_EZR32WG
ezr256k 256 KB clock 5.47s 5.62s

SLSTK3401A_EFM32PG efr256k 256 KB spaceinvaders 6.31s 6.43s

SLWSTK6000A_EFR32MG efr256k 256 KB spaceinvaders 6.31s 6.43s

AN1011: Standalone Programmer via the SWD Interface
Testing

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 30

6. Document Revision History

Revision 0.1

July 26, 2016

Initial release.

AN1011: Standalone Programmer via the SWD Interface
Document Revision History

silabs.com | Smart. Connected. Energy-friendly. Rev. 0.1 | 31

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	1. Hardware Overview
	1.1 Hardware Platform
	1.1.1 EFM32 STK
	1.1.2 Customized Hardware

	1.2 Memory for Binary Image Storage
	1.2.1 EBI NAND Flash
	1.2.2 SPI NOR Flash
	1.2.3 Cache

	1.3 USB Interface
	1.4 LCD Module
	1.5 Serial Port
	1.6 Gang Programmer Mode

	2. Software Overview
	2.1 USB Host
	2.2 LCD Module
	2.3 Serial Port
	2.4 Upload Image
	2.5 Program Target Device
	2.5.1 Bit-Bang
	2.5.2 Flash Erase
	2.5.3 Combine Bootloader with Application Binary File
	2.5.4 Flash Write
	2.5.5 Flash Verify
	2.5.6 Debug Access and Authentication Access Port (AAP) Access Lock

	2.6 Compile Options
	2.7 Add a New Silicon Labs EFM32/EFR32/EZR32 Device to the Programmer

	3. User Interface
	3.1 Push Buttons
	3.2 LEDs
	3.3 Display
	3.3.1 No Display
	3.3.2 External LCD Module
	3.3.3 Serial Interface

	4. Operation Flow
	4.1 Text File and Binary Image
	4.2 Menu Operation
	4.2.1 Main Menu
	4.2.2 Program Flash Submenu
	4.2.3 Upload Image Submenu
	4.2.4 Erase Main Flash Submenu
	4.2.5 Erase User Page Submenu

	5. Testing
	5.1 Test Setup
	5.2 Test Results

	6. Document Revision History

