

 CONFIDENTIAL

Instruction

Working in 500 Series Environment User Guide

Document No.: INS12366

Version: 22

Description: Describes the 500 Series software development environment with respect to tools,
installation and build in both uVision and makefile system. Application related
matters are also described such as bootloader, OTA firmware update, interrupt
service routines

Written By: JFR;EFH;JSI;PSH;COLSEN;JBU;BBR

Date: 2018-03-06

Reviewed By: JSI;PSH;SSE;NTJ;BBR;JFR;CRASMUSSEN

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification

2018-03-06 14:02:07 NTJ Niels Thybo Johansen

This document is the property of Silicon Labs. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any
purpose. This restriction does not limit the recipient's right to use information
contained in the data if it is obtained from another source without restriction.

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page ii of iv

 CONFIDENTIAL

REVISION RECORD

Doc. Ver. Date By Pages affected Brief description of changes

1 20130517 JFR
EFH

ALL Initial draft

2 20130613 JFR
EFH
TRO
JBU

ALL Major revision

2 20130930 JSI Section 4.3 & 4.4
Section 4.2

Added Bootloader description
Added application interrupt service routines

3 20131016 JFR Section 4.2.2
Section 4.5.1
Section 3.4

Updated application interrupt service routines description for makefiles
Added external NVM application data
Extended makefile parameter description

3 20131125 JSI Section 4.3 & 4.4 Updated with regard to added OTA support for 256KB and NVM
Added Figure 7

4 20131127 TRO Section 4.4.3 Add description of OtaInit(..)

5 20140123 JSI Section 4.2.1
Section 3.4

Updated IV address for uVision project
LIB16 parameter added

6 20140130 JSI
JFR
EFH

Section 4.5.1
Section 3.2
Table 2
Section 4.6.2
Section 4.2.1

Added description of NVM_LIB_SIZE
Removed KEIL_LOCAL_PATH
Clarified targets
Removed internal R&D note
Removed IV(0x1800) insertion description (now automatically)

7 20140312 JFR Section 4.2 EA global enable usage

8 20140404 PSH Section 4.2 Removed unnecessary makefile step in interrupt handling

9 20150211 JFR
EFH

Section 3.4
Section 4.5.2
Section 3.4

Added description of sticky make targets
Added section 4.5.2 , External NVM Application data layout and location
LIB16 parameter removed

10 20150517 JFR Section 3.4.11 Removed generation of an uVision multi-project file

11 20160120 JFR Section 3.1
Section 4.1
Section 4.5

Updated Keil PK51 Professional Developers Kit version
Updated porting requirements
Updated Z-Wave Plus application implementation

12 20160421 JFR Section 3.1 Updated to Keil PK51 9.54A.

13 20160525 COLSEN Section 3.4.10 Added TEST_INTERFACE parameter

13 20160530 TRO Section 4.3 Change NVM decription for SDK 6.61/SDK 6.7x

13 20160801 TRO Section 4.4.4 Firmware update SDK 6.51.x application to SDK with S2 support

13 20160816 TRO Section 4.3 Bootloader description

13 20160817 EFH Section 4.5.3 Added description of NVM data initialization

13 20160817 TRO Section 4.4.4 Bullet points phase 2: add porting possibilities. Change Figure 11

14 20160919 JBU Section 4.4.1 &
4.4.2

Described how to transfer OTZ files via Firmware Update Meta Data
Command Class

15 20170112 EFH Section 4.5.2 Added clarification of rules for adding new NVM variables

16 20170208 TRO Section 4.4.3,
4.4.4, 4.4.4.1 and
4.4.4.2

Added intermediate description for Makefile and application source code

17 20170301 TRO Section 4.4.4 Update section after review

17 20170328 TRO Section 3.4.1 Update BOOT parameter for BOOTLOADER_UPDATE

18 20170619 PSH Section 3.4.5

Section 4.5.1

Removed MY frequency and clarified that frequency parameter is
required.
Specified that 16KB EEPROM will not work on controllers

19 20170817 EFH Section 3.4.12 and
3.4.13

Added description of make parameter options UVISIONPREBUILD and
UVISIONPOSTBUILD

20 20171116 JSI Section 4.5.2.1 Added description of SDK 6.6x+ application external NVM usage
definition

20 20171116 JFR Section 4.5.1 Removed NVM_LIB_SIZE = 0x6000 and 16KB EEPROM option as
external NVM

21 20180228 JFR Section 3.4.5 Clarified missing parameters

22 20180306 BBR All Added Silicon Labs template

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page iii of iv

 CONFIDENTIAL

Table of Contents

1 ABBREVIATIONS ... 1

2 INTRODUCTION ... 1

2.1 Purpose .. 1
2.2 Audience and prerequisites .. 1

3 DEVELOPMENT ENVIRONMENT SETUP AND EXECUTION ... 2

3.1 3
rd

 party tools to SDK ... 2
3.2 Environment Setup ... 3
3.3 Compiling from the Command Line .. 5
3.4 Makefile project .. 6

3.4.1 BOOT parameter .. 8
3.4.2 BOARD parameter ... 8
3.4.3 CHIP parameter ... 9
3.4.4 CODE_MEMORY_MODE parameter .. 9
3.4.5 FREQUENCY parameter ...10
3.4.6 HOST_INTERFACE parameter ...11
3.4.7 IMA parameter ...11
3.4.8 LIBRARY parameter ..12
3.4.9 SENSOR_TYPE parameter ...12
3.4.10 TEST_INTERFACE parameter ..13
3.4.11 UVISION parameter ...13
3.4.12 UVISIONPREBUILD parameter ...13
3.4.13 UVISIONPOSTBUILD parameter ..14
3.4.14 WATCHDOG parameter ..14

4 DEVELOPING APPLICATION CODE ..15

4.1 Porting Requirements ...15
4.2 Application Interrupt Service Routine ...15

4.2.1 uVision project ..15
4.2.2 Makefile projects ..19

4.3 Bootloader ..20
4.3.1 SDK6.61 NVM descriptor layout ..21

4.4 OTA Firmware Update ...22
4.4.1 Handling uncompressed OTA files ..22
4.4.2 Handling compressed OTZ files ...22
4.4.3 Z-Wave Plus OTA Firmware Update implementation ..22
4.4.4 Firmware updating SDK 6.51.xx/6.61.xx to the SDK with S2 support (SDK 6.7x)23

4.4.4.1 Intermediate application Makefile ...24
4.4.4.2 Intermediate application source code ..26

4.5 Z-Wave Plus Application implementation ...27
4.5.1 External NVM Application data ..27
4.5.2 External NVM Application data layout and location ...28

4.5.2.1 SDK 6.6x+ External NVM Application data layout and location29
4.5.3 External NVM Application data initialization ...32

4.6 C Coding Requirements ...33
4.6.1 Indirect function pointers when using code banking ..33
4.6.2 Testing for generic null pointers ...33
4.6.3 Function pointers must be code-specific ..34
4.6.4 Code Space Shortage ..34

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page iv of iv

 CONFIDENTIAL

REFERENCES ...35

INDEX ...36

Table of Figures

Figure 1, Configuring KEILPATH environment variables .. 3
Figure 2, Configuring TOOLSDIR environment variables ... 4
Figure 3, Building sample applications .. 5
Figure 4, Possible sample application targets ... 5
Figure 5, Building sample applications and uVision project files ... 13
Figure 6, Adding interrupt module to uVision .. 16
Figure 7, Opening file options for interrupt module ... 17
Figure 8, Adding preprocessor symbols to interrupt module ... 18
Figure 9, NVM layout for 128Kbytes and 256Kbyte EEPROM. .. 20
Figure 10, show SDK 6.61 how application NVM is configured. ... 21
Figure 11, shows phases for updating sample application to support S2 based on the SDK 6.7x. 24

List of Tables

Table 1. Description of BOOT parameters in command line ... 8
Table 2. Description of BOARD parameters in command line .. 8
Table 3. Description of CHIP parameters in command line .. 9
Table 4. Description of CODE_MEMORY_MODE parameters in command line 9
Table 5. Description of FREQUENCY parameters in command line .. 10
Table 6. Description of HOST_INTERFACE parameters in command line .. 11
Table 7. Description of IMA parameters in command line... 11
Table 8. Description of LIBRARY parameters in command line ... 12
Table 9. Description of SENSOR_TYPE parameters in command line .. 12
Table 10. Description of TEST_INTERFACE parameter in command line ... 13
Table 11. Description of WATCHDOG parameters in command line ... 14
Table 12, show how to find NVM_APP_START and NVM_APP_END address in map file. 21

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 1 of 36

 CONFIDENTIAL

1 ABBREVIATIONS

Abbreviation Explanation

GNU An organization devoted to the creation and support of Open Source software

IMA Installation and Maintenance Application

NVM Non-volatile Memory

OTA Over The Air

SDK Z-Wave Software Developer’s Kit

WUT Wake Up Timer

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to guide the Z-Wave application programmer through the very first
Z-Wave software system build. This programming guide describes how to build a complete program and
load it on a 500 Series Z-Wave module. Refer to [1], [2] or [3] depending on SDK used regarding Z-Wave
Plus applications hosted on the 500 Series Z-Wave module.

2.2 Audience and prerequisites

The audience is R&D software application programmers. The programmer should be familiar with the
Keil PK51 Professional Developers Kit for the 8051 microcontroller and the GNU make utility.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 2 of 36

 CONFIDENTIAL

3 DEVELOPMENT ENVIRONMENT SETUP AND EXECUTION

The developer can choose from two methods to develop, build, and download firmware to the Z-Wave
500 Series single chips:

 Use Keil uVision4 Integrated Development Environment

 Use a source code editor, make command line tool, and the Z-Wave Programmer GUI tool

3.1 3
rd

 party tools to SDK

There is an additional 3
rd

 party software tool that is required to develop Z-Wave applications that is not
supplied with the SDK. That is the Keil PK51 Professional Developers Kit v9.54A for the 8051
microcontroller.

Notice that PK51 Professional Developers Kit v9.54A must be used due to bugs identified when using
banking etc.

The Keil PK51 Professional Developers Kit v9.54A can be purchased through Digi-Key Corporation
www.digikey.com as our Z-Wave SDK. Alternative distributors visit www.keil.com for details.

In the following it is assumed that PK51 Professional Developers Kit v9.54A is installed in the folder
C:\KEIL\C51.

https://www.silabs.com/
http://www.digikey.com/
http://www.keil.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 3 of 36

 CONFIDENTIAL

3.2 Environment Setup

A couple of environment variables must be defined before the sample applications can be built on the
Z-Wave SDK:

 KEILPATH

 TOOLSDIR

The procedure on a Windows PC is performed as follows:

1. Select Start, Control Panel and System
2. Windows XP: Select Advanced tab and click the Environment Variables button
3. Windows 7: Open Advanced system settings, select Advanced tab and click Environment

Variables button

Figure 1, Configuring KEILPATH environment variables

4. Under System variables activate the New button
5. In the Variable name textbox enter KEILPATH (use capital letters because Windows is case

sensitive)
6. In the Variable value textbox enter C:\KEIL\C51 and activate the OK button

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 4 of 36

 CONFIDENTIAL

7. Under System variables activate the New button

Figure 2, Configuring TOOLSDIR environment variables

8. In the Variable name textbox enter TOOLSDIR (use capital letters because Windows is case
sensitive)

9. In the Variable value textbox enter C:\SDK\TOOLS and activate the OK button

Afterwards open a command prompt (DOS box) in the relevant sample application directory to build the
application.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 5 of 36

 CONFIDENTIAL

Figure 3, Building sample applications

Remember to use upper case in KEILPATH and TOOLSDIR when using Windows, because this
operating system is case sensitive. If the environment variables are not defined then MK.BAT will prompt
the user to define them.

Opening a command prompt to a particular directory from Explorer is enabled in the following way:

1. Start regedit
2. Go to HKEY_CLASSES_ROOT \ Directory \ shell
3. Create a new key called Command
4. Give it the value of the name you want to appear in the Explorer. Something like Open DOS Box
5. Under this create a new key called command
6. Give it a value of cmd.exe /k "cd %L"
7. Now when you are in the Explorer, right click on a folder, select Open DOS Box, and a command

prompt will open to the selected directory.

3.3 Compiling from the Command Line

The command line batch file, MK.BAT, can build all versions with respect to device types (Portable
Controller, Static Controller, Bridge Controller, Enhanced 232 Slave, Routing Slave, etc.) and RF
frequencies (ANZ/EU/HK/IL/IN/JP/KR/MY/RU/US) at once, or the wanted target can also be entered as a
parameter on the command line. The figure below displays the possible targets for a given product.

Figure 4, Possible sample application targets

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 6 of 36

 CONFIDENTIAL

Remember to enter the targets in upper and lower case as shown.

For every parameter, you can specify a single variant to build for in three different ways:

 By specifying the frequency in your command line, like:
 > mk “FREQUENCY=EU”

 By setting the parameter in the Makefile (it is prepared):
FREQUENCY:=EU

 Alternatively you can do the same by setting your environment from the command line with:
 > SET FREQUENCY=EU

Remember to UNSET this when you jump to work on other things.

You can combine these methods in any way for the different parameters.

When MK.BAT is executed the following directory structure is created within the source code directory as
depicted below:

- <appl>
- build

- <appl>_ZW050x_<freq. etc.> - SD3502/ZDB3502 and ZM5101/ZDB5101 module

- list - contains list files

- rels - contains object files and map files

<appl>_ZW050x_<freq. etc.>.hex - application hex file

3.4 Makefile project

The file Makefile is initially read by the make tools that are called from mk.bat. It creates the directory
structure and defines the build-targets and then calls the other makefiles in the build depending on the
target.

Every sample application has a main Makefile describing what can be built. It also gives the developer an
opportunity to limit what is built to a subset of this.

Targets can be built for lots of variants defined by the following parameters:

 BOOT

 BOARD

 CHIP

 CODE_MEMORY_MODE

 FREQUENCY

 HOST_INTERFACE

 IMA

 LIBRARY

 SENSOR_TYPE

 UVISION

 WATCHDOG

Not all of these parameters are relevant for all applications, but the irrelevant ones are set to a default
selected value in the applications Makefile.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 7 of 36

 CONFIDENTIAL

For every one of these parameters, there are three different ways to set which one you want. The three
ways to do this is described in the Makefile for the application. You can leave parameters unspecified.
Then make will build targets for all combinations of these parameters.

The applications main Makefile defines a list of modules, which are specific for the application, and which
shall be included in the build.

The applications main Makefile also defines CDEFINES, which are specific for the application.

In a clean product directory, if you do not fully specify all parameters for the single target, you want to
build, the make command will only give you a short help text listing what you can build, and an example
command line fully specifying a single target. Copy and paste this example line and correct it to match
your preferred single target.

Next time you rebuild your single target, you only need to execute the make command "MK" without any
parameters. Then your single target will be rebuilt.

If you want to build a group of targets, then leave selected parameters unspecified, and add to the make
command a pseudo target "ZW0x0x". In this way you can build all possible targets in just one command
(without ending up in the help text).

In the process of building your single preferred target, a Makefile.sticky will be made in your project
directory. This makefile is the one, which controls which target is your preferred one. If you decide for
another target, you can delete the Makefile.sticky or just make a "MK clean". Or you can simply fully
specify another single target. Then this one will be built, and it will be your preferred target onwards.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 8 of 36

 CONFIDENTIAL

3.4.1 BOOT parameter

This parameter is used to build an application with/without a bootloader included when supporting OTA
firmware update. The bootloader is used to copy firmware image from external NVM to internal code
space.

Table 1. Description of BOOT parameters in command line

Parameter Result

No parameters specified Building all variants of the application and
bootloader:
* without a bootloader,
* bootloader,
* application with a bootloader and
* application without a bootloader but taking
into account that it already resides in FLASH
memory.

BOOT=nonBOOT Building application without a bootloader.

BOOT=BOOTLOADER Building bootloader, which is a pre-requisite for
BOOTLOADER_ENABLED.

BOOT=BOOTLOADER_ENABLED Building application with a bootloader and the
same application without a bootloader but
taking into account that it already resides in
FLASH memory. The application without a
bootloader is used to make an OTA firmware
update.

BOOT=BOOTLOADER_UPDATE (Only SDK 6.61.01)

Build intermediate application for updating
SDK 6.61.01 target to SDK 6.71x (see 4.4.4).

3.4.2 BOARD parameter

This parameter specifies the target hardware platform when building the application.

Table 2. Description of BOARD parameters in command line

Parameter Result

No parameters specified Building for all hardware platforms.

BOARD=ZDP03A Building for a ZDB3502 mounted on a ZDP03A

BOARD=ZM5101 Building for a ZDB5101 mounted on a ZDP03A

BOARD=ZM5202 Building for a ZDB5202 mounted on a ZDP03A

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 9 of 36

 CONFIDENTIAL

3.4.3 CHIP parameter

This parameter specifies the chip used. However, only the 500 Series chip is supported currently.

Table 3. Description of CHIP parameters in command line

Parameter Result

No parameters specified Building application for 500 Series chip

CHIP=ZW050x Building application for 500 Series chip

3.4.4 CODE_MEMORY_MODE parameter

This parameter specifies the code memory layout used. This parameter supports only banking.

Table 4. Description of CODE_MEMORY_MODE parameters in command line

Parameter Result

No parameters specified Building application for a banked environment.

CODE_MEMORY_MODE=banking Building application for a banked environment.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 10 of 36

 CONFIDENTIAL

3.4.5 FREQUENCY parameter

This parameter specifies the RF frequency to be built. Some of the selections cover additional countries.

Table 5. Description of FREQUENCY parameters in command line

Parameter Result

No parameters specified Prompt frequency input in case the pseudo
target “ZW0x0x” is not specified.

FREQUENCY=ANZ Building targets using Australia and New
Zealand frequency

FREQUENCY=EU Building targets using European Union
frequency

FREQUENCY=HK Building targets using Hong Kong frequency

FREQUENCY=IL Building targets using Israel frequency

FREQUENCY=IN Building targets using India frequency

FREQUENCY=JP Building targets using Japan frequency

FREQUENCY=JP_DK Building targets using Japan frequency for
testing only. This variant uses a lower “Listen
Before Talk” threshold to allow testing in
Denmark.

FREQUENCY=KR Building targets using Korea frequency

FREQUENCY=RU Building targets using Russia frequency

FREQUENCY=US Building targets using United States frequency

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 11 of 36

 CONFIDENTIAL

3.4.6 HOST_INTERFACE parameter

This parameter specifies the serial API communication interface to be built. This parameter is only
supported by the serial API applications.

Table 6. Description of HOST_INTERFACE parameters in command line

Parameter Result

No parameters specified Building application for all serial API
communication interfaces.

HOST_INTERFACE=UART Building application for an UART based serial
API communication interfaces.

HOST_INTERFACE=USBVCP Building application for an USBVCP based
serial API communication interfaces.

3.4.7 IMA parameter

This parameter specifies if the IMA features are included. This parameter is only available for serial API
applications based on static controllers. The IMA features support a service provider network installation
and maintenance procedure.

Table 7. Description of IMA parameters in command line

Parameter Result

No parameters specified Building application based on static controller
having IMA variant.

IMA=nonIMA Skip building application based on static
controller having IMA variant.

IMA=IMA_ENABLED Building application based on static controller
having IMA variant.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 12 of 36

 CONFIDENTIAL

3.4.8 LIBRARY parameter

This parameter specifies the Z-Wave protocol to be used when building the application.

Table 8. Description of LIBRARY parameters in command line

Parameter Result

No parameters specified Building application based on all supported
Z-Wave protocols.

LIBRARY=controller_bridge Building application based on bridge controller.

LIBRARY=controller_portable Building application based on portable
controller.

LIBRARY=controller_static Building application based on static controller.

LIBRARY=controller_static_norep Building application based on static controller
without repeater functionality.

LIBRARY=controller_static_single Building application based on static controller
used in ERTT measurements. This library can
suppress retransmissions of a frame.

LIBRARY=slave_enhanced_232 Building application based on enhanced 232
slave, which use an external NVM

LIBRARY=slave_routing Building application based on routing slave,
which do not use an external NVM

3.4.9 SENSOR_TYPE parameter

This parameter specifies battery operated or always listening device when building application.

Table 9. Description of SENSOR_TYPE parameters in command line

Parameter Result

No parameters specified Building all applications.

SENSOR_TYPE=NON_BATT Building application for always listening
devices.

SENSOR_TYPE=BATTERY Building application for battery operated
devices, which typically sleeps.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 13 of 36

 CONFIDENTIAL

3.4.10 TEST_INTERFACE parameter

The TEST_INTERFACE parameter enables a user to use the Test Interface in the Z-Wave Plus
Framework. See the following table for possible values.

Table 10. Description of TEST_INTERFACE parameter in command line

Parameter Result

No parameters specified Building all combinations.

TEST_INTERFACE=YES The application is built with the Test Interface.

TEST_INTERFACE=NO The application is not built with the Test
Interface.

3.4.11 UVISION parameter

The UVISION parameter enable a user to generate Keil uVision4 project files for the embedded sample
application based on a 500 Series Z-Wave Single Chip. The uVision4 project files are generated by
opening a command prompt (DOS box) in the relevant sample application directory and adding
“UVISION=1” to command MK.

Figure 5, Building sample applications and uVision project files

3.4.12 UVISIONPREBUILD parameter

The UVISIONPREBUILD parameter is not intended for use directly by the customer. The option is used
by a generated uVision project to fullfill the need for making things before uVision starts building.

In uVision terms: Options for target->User->Before Build/Rebuild->Run #1 or
<BeforeMake><UserProg1Name> in the .uvproj file contains a make-command with this option set
(UVISIONPREBUILD=1)

This could include generating some header files, which the target program depends on.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 14 of 36

 CONFIDENTIAL

3.4.13 UVISIONPOSTBUILD parameter

The UVISIONPOSTBUILD parameter is not intended for use directly by the customer. The option is used
by a generated uVision project to fullfill the need for making things after uVision has built the executable.

In uVision terms: Options for target->User->After Build/Rebuild->Run #1 or
<AfterMake><UserProg1Name> in the .uvproj file contains a make-command with this option set
(UVISIONPOSTBUILD=1)

This could include converting the absolute object file to a hex file, adding a checksum, adding a
bootloader, or other things.

3.4.14 WATCHDOG parameter

By default, the watchdog is disabled in the Z-Wave Plus sample applications. This is an advantage
during development and testing prior to final release testing. An enabled watchdog may prevent firmware
crashes and stalls from being discovered during development and initial testing. As a side note,
debugging a system with an enabled watchdog can be a challenge.

A released product SHOULD have the watch dog enabled. Remember to conduct a full system test on a
product having the watchdog enabled.

Table 11. Description of WATCHDOG parameters in command line

Parameter Result

No parameters specified Building two targets:
* watchdog disabled and
* watchdog enabled

WATCHDOG=WATCHDOG_DISABLED Building target having watchdog disabled.

WATCHDOG=WATCHDOG_ENABLED Building target having watchdog enabled.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 15 of 36

 CONFIDENTIAL

4 DEVELOPING APPLICATION CODE

All sample applications [1] for the 500 Series Z-Wave Single Chip contain source code and makefiles
that allow the developer to modify and compile the applications without modifying makefiles, etc. Sample
applications are built by calling the MK.BAT script file that is located in the sample application directory.
Alternatively, use the integrated development environment uVision from Keil. However, the uVision
project files must first be generated as described in section 3.4.11.

A 32kB code bank is allocated for application development and available data memory is 4KB. Internal
NVM (same as MTP in 400 Series) now supports 64 Bytes. The application developer MUST NOT
exceed the above limitations due to future protocol enhancements. External NVM depends on the
Z-Wave Development Board used.

4.1 Porting Requirements

A Z-Wave application based on earlier Z-Wave Single Chips must first be ported to the 500 Series Single
Chip. For details about porting, refer to [4], [5] and [6].

The Z-Wave Plus applications based on earlier SDKs may also require porting to a newer version of the
Z-Wave Plus Framework. For details, refer to [7].

4.2 Application Interrupt Service Routine

The application Interrupt Service Routines (ISR) must for various reasons be located in the COMMON
bank and ISR should therefore be defined in a specific module and explicitly located in COMMON.

Set the mask bit to enable the particular interrupt used by application in ApplicationInitSW. Set also
edge/level flag in case an external interrupt is used. Do not set EA (global enable) bit to 1 to enable the
interrupt system because this is taken care of by the Z-Wave protocol.

4.2.1 uVision project

For uVision project this can be done as follows:

 Use the uvision project generator to create uvision project.

 Open the project in uvision IDE

 Create a new c (for example int1.c) file and add your ISR to that file.

 Add the file under the Appl Source Code (COMMON) folder in uvision project browser.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 16 of 36

 CONFIDENTIAL

Figure 6, Adding interrupt module to uVision

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 17 of 36

 CONFIDENTIAL

Edit the int1.c options

Figure 7, Opening file options for interrupt module

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 18 of 36

 CONFIDENTIAL

Under the C51 tab copy the content of the define box from another file to the int1.

Figure 8, Adding preprocessor symbols to interrupt module

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 19 of 36

 CONFIDENTIAL

4.2.2 Makefile projects

For Makefile based projects a few changes must be made in some of the makefiles. First, add the
following changes to the Makefile file in the ProductPlus or Product application folder.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 20 of 36

 CONFIDENTIAL

4.3 Bootloader

The bootloader is used to support firmware update in product and is included in product HEX-file by
enabling bootloader functionality in build environment.

For SDK 6.5x:

1. mk “BOOT=BOOTLOADER” //Build bootloader
2. mk “BOOT=BOOTLOADER_ENABLED” //Build target and link bootloader into target

For newer SDK’s (not SDK 6.5x):

1. mk “BOOT=BOOTLOADER_ENABLED” //Build target with bootloader

The bootloader library implements a bootloader which resides in the lower 6Kbyte (SDK 6.5x) of the
address space. On System reset the bootloader determines if a valid new firmware exists in the external
NVM and if so, it determines if the firmware should be flashed to CPU Flash and booted. If the System
reset reason (wakeup reason) is either external interrupt or WUT then the bootloader just boots the
current firmware, thereby skipping the NVM firmware check. The bootloader vectors all other interrupts
but the reset vector directly to any application or library defined interrupt vector.

The current bootloader implementation supports either a 128Kbyte or a 256Kbyte (NVM_SIZE) external
NVM (see Figure 9).

Figure 9, NVM layout for 128Kbytes and 256Kbyte EEPROM.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 21 of 36

 CONFIDENTIAL

NVM application area start address (NVM_APP_START) is not fixed and changed dependent of SDK
version. The bootloader handle moving Application area under a firmware update to new address. Table
12,describe how to find NVM_APP_START and application size dependent of SDK’s.

Table 12, show how to find NVM_APP_START and NVM_APP_END address in map file.

SDK Address name Address of descriptor
name in MAP-file

Comment

6.5x NVM_APP_START nvmApplDescriptor NVM application data are part of
nvmApplDescriptor and not
shown as individual address in
MAP-file. See application
eeprom.h. (Fixed start address
6000h for SDK 6.5x)

NVM_APP_END nvmDescriptor See application eeprom.c

6.61-> NVM_APP_START nvmApplicationSize See section 4.3.1.

NVM_APP_END nvmApplicationDescriptor

NVM application area size depends on EEPROM size. For 128KB EEPROM is max address
(NVM_APP_END) 0x77FE and 256KB EEPROM is max address (NVM_APP_END) 0x1FFFE.

4.3.1 SDK6.61 NVM descriptor layout

From SDK 6.61 a new NVM descriptor layout is introduced for a more compact NVM layout. NVM
module variables are not included in a struct as in SDK 6.5.x (nvmApplDescriptor). This gives the
possibility to see each application NVM variable in the map file. Figure 10 show the new NVM layout.

Figure 10, show SDK 6.61 how application NVM is configured.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 22 of 36

 CONFIDENTIAL

4.4 OTA Firmware Update

Many sample applications already implements OTA firmware update support. However, the following
sections describe how to enable OTA firmware update on a ported application to the 500 Series Single
Chip.

The current implementation of Firmware Update Meta Data Command Class uses Version 2 and
therefore the OTA transfers maximum 128 Kbyte (or from 0x00000 to last byte defined – last byte in
Bank 3).

4.4.1 Handling uncompressed OTA files

As the Bootloader occupies the space from 0x00000-0x017FF (6Kbyte) the first 0x01800 bytes are all
0xFF in the Firmware image transferred. The first 0x01800 bytes are thrown away if a 128KB NVM are
used but first after being included in the running CRC16 calculation. The running CRC16 calculation is a
CRC16 calculation done on the full received Firmware Image and must match the Checksum received in
the FIRMWARE_UPDATE_MD_REQUEST_GET frame transmitted by the HOST to initiate the OTA
sequence.

4.4.2 Handling compressed OTZ files

Starting with SDK 6.70, over-the-air update files are compressed. Compressed OTA files can be
recognized by their file extension .OTZ. OTZ files are Intel Hex encoded binary files. The OTZ file must
be converted from Intel Hex to binary, and then transmitted unmodified as Firmware Update Meta Data
Command Class-encapsulate payload [10]. The RECOMMENDED fragment size is 20 bytes.

Note: The padding mechanism used for uncompressed OTA files does not apply to compressed OTZ
files. The usual Firmware Update Meta Data Command Class CRC16 calculation must cover the entire
binary contents of the OTZ file.

4.4.3 Z-Wave Plus OTA Firmware Update implementation

Here are the steps to update a Z-Wave Plus sample application to enable support of OTA firmware
update:

1. Add header files:
a. #include <CommandClassFirmwareUpdate.h>
b. #include <ota_util.h>

2. Add Cmd Class in nodeInfo[] list:
a. COMMAND_CLASS_FIRMWARE_UPDATE_MD_V2

3. In ApplicationCommandHandler switch case add:
case COMMAND_CLASS_FIRMWARE_UPDATE_MD_V2:

 HandleCommandClassFWUpdate(txOption, sourceNode, pCmd, cmdLength);

 break;

4. Implement in application BOOL ZCB_OTAStart () and Void ZCB_OTAFinish (OTA_STATUS
otaStatus). Please see header documentation on OtaInit(..).

5. In ApplicationInitSW() call OtaInit(..) to initialize ota_util module and include ZCB_OTAStart and
ZCB_OTAStart as input parameters.

6. In the makefile add CommandClassFirmwareUpdate.obj and ota_util.obj
7. In the makefile include BOOTLOADER and BOOTLOADER_ENABLED flag and build target.

See how it is done in a working file.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 23 of 36

 CONFIDENTIAL

Regarding an OTA firmware update implementation see for example in the SwitchOnOff.c file for the
Z-Wave Plus Switch On/Off application.

/*============================ OTA_Finish ===============================

** Function description

** OTA is finish.

**

** Side effects:

**

**--*/

void

OTA_Finish(OTA_STATUS otaStatus) /*Status on OTA*/

{

 /* Just reset node to start on new image or cleanup if update failed*/

 ZW_WatchDogEnable(); /*reset asic*/

 while(1);

}

/*============================ OTA_Start ===============================

** Function description

** Ota_Util calls this function when firmware update is ready to start.

** Return FALSE if OTA should be rejected else TRUE

**

** Side effects:

**

**---*/

BOOL /*Return FALSE if OTA should be rejected else TRUE*/

OTA_Start(WORD fwId, WORD CRC)

{

 return TRUE;

}

4.4.4 Firmware updating SDK 6.51.xx/6.61.xx to the SDK with S2 support (SDK 6.7x)

Firmware updates of an SDK 6.51.x application to the SDK with S2 support need to be done through an
intermediate application based on SDK 6.6x (not SDK 6.61.00!). A SDK 6.6x intermediate application
includes code for updating the bootloader (in node) to a SDK 6.71.01+ bootloader supporting
compressed firmware update and firmware update code supporting this as this is needed for making the
firmware update to the SDK with S2.

 Phase 1: Port product to SDK 6.6x.
o Update application Makefile, see section 4.4.4.1.
o Update application source file, see section 4.4.4.2
o Build SDK 6.6x project with: >mk “BOOT=BOOTLOADER_UPDATE” …

 Product build with “BOOT=BOOTLOADER_UPDATE” only supports firmware
update with OTZ firmware files!

 Output: OTA file.
o Firmware Update target with OTA file.

 Now product only supports firmware update with OTZ firmware files!

 Phase 2: Update product to target with S2 support.
o Port product to SDK 6.7x. Customer have two possibilities:

 Port SDK 6.5x product to SDK 6.7x
 Port SDK 6.6x intermediate product to SDK 6.7x

o Build SDK 6.7x project with: >mk “BOOT=BOOTLOADER_ENABLED”. …

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 24 of 36

 CONFIDENTIAL

 Output OTZ file.
o Firmware Update target with OTZ file.

Figure 11, shows phases for updating sample application to support S2 based on the SDK 6.7x.

The intermediate application MUST be a certified application to guarantee application still works if
firmware updates fails!

4.4.4.1 Intermediate application Makefile

Application Makefile need to be updated to support BOOTLOADER_UPDATE.

1, Add object files dependent of flags BOOTLOADER_ENABLED, BOOTLOADER_UPDATE:

ifneq ($(BOOTLOADER_UPDATE),)

RELFILES+=\

 firmware_update_nvm.obj\

 firmware_update_nvm_write.obj\

 otz_check_compressed_crc.obj

endif

ifneq ($(BOOTLOADER_ENABLED)$(BOOTLOADER_UPDATE),)

RELFILES+=\

 CommandClassFirmwareUpdate.obj\

 ota_util.obj

endif

2, Change target name from:

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 25 of 36

 CONFIDENTIAL

Target name (Name of your target directory and base name of your target

files)

ifneq ($(BOOTLOADER_ENABLED),)

ifeq ($(LIBRARY),slave_routing)

LIBRARY:=slave_enhanced_232

ENH:=_enhanced_232

endif

TARGET:=$(APP)_$(LIB)_OTA_$(CHIPPACK)_$(COUNTRY)$(TEST)$(SEC)$(EP)

else

TARGET:=$(APP)_$(LIB)_$(CHIPPACK)_$(COUNTRY)$(TEST)$(SEC)$(EP)

endif

To:

Target name (Name of your target directory and base name of your target

files)

ifneq ($(BOOTLOADER_ENABLED)$(BOOTLOADER_UPDATE),)

ifeq ($(LIBRARY),slave_routing)

LIBRARY:=slave_enhanced_232

ENH:=_enhanced_232

endif

endif

TARGET:=$(APP)_$(LIB)

ifneq ($(BOOTLOADER_ENABLED),)

TARGET:=$(TARGET)_OTA

endif

ifneq ($(BOOTLOADER_UPDATE),)

TARGET:=$(TARGET)_OTU

endif

TARGET:=$(TARGET)_$(CHIPPACK)_$(COUNTRY)$(TEST)$(SEC)

3, In section “Addition to the variants to build”.

 Add flag BOOTLOADER_UPDATE to boot load list “LIST_OF_BOOT”:

LIST_OF_BOOT:=nonBOOT BOOTLOADER_ENABLED BOOTLOADER_UPDATE

Add boot options:

ifeq ($(BOOT),BOOTLOADER_ENABLED)

BOOT_OPTION:=BOOTLOADER_ENABLED=1

BOOTLOADER_ENABLED:=1

endif

ifeq ($(BOOT),BOOTLOADER_UPDATE)

BOOT_OPTION:=BOOTLOADER_UPDATE=1

BOOTLOADER_UPDATE:=1

endif

4, In section “Filtering out targets” add BOOTLOADER_UPDATE flag:

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 26 of 36

 CONFIDENTIAL

Filtering out targets, which have no meaning, or are just not needed.

The controlling variant name must be listed before the controlled variant

name in the LIST_OF_VARIANTS

for this to work.

#LIST_OF_VARIANTS:=LIBRARY FREQUENCY CODE_MEMORY_MODE SENSOR_TYPE CHIP

ifneq ($(BOOTLOADER_ENABLED)$(BOOTLOADER_UPDATE),)

BOOTLOADER_ENABLED has no meaning for slave_routing, because there is no

room for a new firmware image in NVM

LIST_OF_LIBRARY:=$(filter-out slave_routing, $(LIST_OF_LIBRARY))

BOOTLOADER_ENABLED cannot build for some of the controller types, because

there is no room for code in COMMON

LIST_OF_LIBRARY:=$(filter-out controller_bridge controller_static,

$(LIST_OF_LIBRARY))

endif

4.4.4.2 Intermediate application source code

SDK 6.61.01 has support for building intermediate application and depends on application Makefile is
change as described in section 4.4.4.1.

Search and replace flag “BOOTLOADER_ENABLED”:

#ifdef BOOTLOADER_ENABLED

To:

#if defined(BOOTLOADER_ENABLED) | defined(BOOTLOADER_UPDATE)

Module “ota.h” API is changed to use command class firmware update version 4, why application source
code need to be updated to new API:

void

OtaInit(

 BYTE txOption,

 BOOL (CODE *pOtaStart)(void),

 VOID_CALLBACKFUNC(pOtaFinish)(BYTE val));

To:

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 27 of 36

 CONFIDENTIAL

BYTE

OtaInit(

 BOOL (CODE *pOtaStart)(WORD fwId, WORD CRC),

 VOID_CALLBACKFUNC(pOtaExtWrite)(BYTE *pData, BYTE dataLen),

 VOID_CALLBACKFUNC(pOtaFinish)(BYTE val));

void

OtaHostFWU_WriteFinish(void);

void

OtaHostFWU_Status(BOOL userReboot, BOOL status);

WORD

handleFirmWareIdGet(BYTE n);

Under initialization The Z-Wave Plus Applications Framework call Bootloader update function

“OverwriteBootloader()” to start updating new bootloader. It is important application call

“Transport_OnApplicationInitSW()” in “ApplicationInitSW()” to kick this process.

4.5 Z-Wave Plus Application implementation

The Z-Wave Plus Applications Framework facilitates implementation of robust Z-Wave Plus compliant
products in a fast and cost effective manner. The Framework provides a number of modules and resides
on top of the Z-Wave Protocol API calls. For details refer to [7].

The Z-Wave Plus applications must be implemented according to the Z-Wave Plus specifications [8]-[15].

4.5.1 External NVM Application data

To allow full utilization of the 500 series internal memory during OTA and future protocol feature roadmap
results in the following recommendations for external NVM memory:

To enable full utilization of the 500 series with respect to future protocol features and OTA firmware
update results in the following recommendations for external NVM:

Minimum requirements when selecting external NVM for devices without OTA firmware update support:

 32KB – Required for slave and controller devices

Minimum requirements when selecting external NVM for devices without OTA firmware update support:

 128KB – Required for slave devices

 256KB – Required for controller devices

Initialization of the external NVM is completely handled by the Z-Wave protocol and thereby obsoleting
the NVM initialization file extern_epp.hex. SDK 6.61 and later introduced a new NVM layout (see 4.3.1),
which dynamically allocated the necessary address space for protocol and application respectively.

The former SDK 6.51 used fixed addresses for allocation of address space for protocol and application
respectively.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 28 of 36

 CONFIDENTIAL

Notice that NVM above 64K cannot be addressed with the old memory API calls (parameter offset is a
WORD). To access NVM memory above 64KB use the NVM_ext_read_long_buffer() and
NVM_ext_write_long_buffer() API calls. These two functions can handle the full NVM address space (0-
NVM_SIZE) and therefore should be used with care because library resides in the beginning of external
NVM.

4.5.2 External NVM Application data layout and location

In order to keep your application’s NVM variables ordered and kept together, they must all be defined,
and optionally initialized (once) in one file: eeprom.c, and declared in one file: eeprom.h. This is very
important, when you want to facilitate Firmware Update. The NVM variables layout must be kept totally
equal between versions of your software. You can only append new variables following the ones in the
old version of your software. Even if you no longer use a variable in the new version of your software, the
variable must be kept forever.

Make sure the compiler won't shuffle around with these variables, as there are external dependencies.
You do this by using the compiler directive in the source file defining the NVM variables:

#pragma ORDER

Note from Keil C51 manual:
“Variables with memory type, initilalization, and without initilalization have all different tables. Therefore
only variables with the same attributes are kept within order.”

Note from Keil knowledgebase: (http://www.keil.com/support/docs/901.htm)
"The order is not necessarily taken from the variable declarations, but the first use of the variables."

Therefore, when using #pragma ORDER to order variables, declare them in the order they should be in a
collection. And none of them may be declared or known in any way from other header files.

It is a bit confusing reading the Keil notes, because they are not fully aware of whether we speak of
variable declarations or variable definitions. Somewhere in Keil’s knowledge base, you can find an
advice regarding ordering your varables, that tells you to put them into a struct, and thereby make their
layout fixed. But this is not the best solution. If you want to make some kind of first time initialization of a
specific one of your aplication’s NVM variables, you can’t do this if it resides in a struct. Then you have to
initialize the whole struct.

Use the SerialAPIPlus application’s eeprom.c and eeprom.h as a template, when you construct a new
application.

To make sure, that your application NVM variable layout matches from your “old” application version to
your “new” application version, always keep an eye on the map file.

You can make a listing of the NVM variables by using the following small script (or a subset of it):

@echo off & setlocal enableextensions enabledelayedexpansion
::
::===
:: Windows batch script for generating NVM map for all variants of firmware.
:: Parameters:
cd build
for /D %%i in (*) do findstr /C:"PUBLIC HDATA" %%i\Rels\%%i.map | sort /O ..\%%i.nvm_map
endlocal & goto :EOF

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 29 of 36

 CONFIDENTIAL

4.5.2.1 SDK 6.6x+ External NVM Application data layout and location

To accommodate the SDK 6.6x+ NVM layout an application must define needed external NVM variables
in eeprom.c (example from SDK 6.61.01 SerialAPIPlus):

/* eeprom.c (SerialAPIPlus sample application) */
#pragma USERCLASS(CONST=NVM)

#pragma ORDER

#include "ZW_basis_api.h"
#include "eeprom.h"
#include "ZW_nvm_descriptor.h"

/*--*/
/* NVM layout SerialAPIPlus (embedded application part) (as in t_nvmModule) */
/* (begin) */

/* Offset from &nvmModule where nvmModuleDescriptor structure is placed */
t_NvmModuleSize far nvmApplicationSize = (t_NvmModuleSize)&_FD_EEPROM_L_;

/* APPLICATION SPECIFIC PART START */

/* NVM variables for your application */
BYTE far EEOFFSET_MAGIC_far;
#ifdef ZW_SLAVE
BYTE far EEOFFSET_LISTENING_far;
BYTE far EEOFFSET_GENERIC_far;
BYTE far EEOFFSET_SPECIFIC_far;
BYTE far EEOFFSET_CMDCLASS_LEN_far;
#else
BYTE far EEOFFSET_CMDCLASS_LEN_far;
#endif
BYTE far EEOFFSET_CMDCLASS_far[APPL_NODEPARM_MAX];
BYTE far EEOFFSET_WATCHDOG_STARTED_far;

/* APPLICATION SPECIFIC PART END */

/* NVM module descriptor for module. Located at the end of NVM module. */
/* During the initialization phase, the NVM still contains the NVM contents */
/* from the old version of the firmware. */
t_nvmModuleDescriptor far nvmApplicationDescriptor =
{
 (t_NvmModuleSize)&_FD_EEPROM_L_, /* t_NvmModuleSize wNvmModuleSize */
 NVM_MODULE_TYPE_APPLICATION, /* eNvmModuleType bNvmModuleType */
 (WORD)&_APP_VERSION_ /* WORD wNvmModuleVersion */
};

/* NVM layout SerialAPIPlus (as in t_nvmModule) (end) */
/*--*/

/* NVM module update descriptor for this new version of firmware. Located */
/* in code space. */
const t_nvmModuleUpdate code nvmApplicationUpdate =
{
 (p_nvmModule)&nvmApplicationSize, /* nvmModulePtr */
 /* nvmApplicationDescriptor is the first new NVM variable since devkit_6_5x_branch */
 (t_NvmModuleSize)((WORD)&nvmApplicationDescriptor), /* wNvmModuleSizeOld */
 {
 (t_NvmModuleSize)&_FD_EEPROM_L_, /* t_NvmModuleSize wNvmModuleSize */
 NVM_MODULE_TYPE_APPLICATION, /* eNvmModuleType bNvmModuleType */
 (WORD)&_APP_VERSION_ /* WORD wNvmModuleVersion */
 }
};

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 30 of 36

 CONFIDENTIAL

And the matching eeprom.h for making the NVM variables accessible for source code.

/* eeprom.h */
#include "ZW_nvm_descriptor.h"

/* NVM allocation declarations */

/* APPLICATION SPECIFIC PART START */

#define MAGIC_VALUE 0x42

/* NVM layout SerialAPIPlus (embedded application part) */
extern t_NvmModuleSize far nvmApplicationSize;
extern BYTE far EEOFFSET_MAGIC_far;
#ifdef ZW_SLAVE
extern BYTE far EEOFFSET_LISTENING_far;
extern BYTE far EEOFFSET_GENERIC_far;
extern BYTE far EEOFFSET_SPECIFIC_far;
extern BYTE far EEOFFSET_CMDCLASS_LEN_far;
#else
extern BYTE far EEOFFSET_CMDCLASS_LEN_far;
#endif
extern BYTE far EEOFFSET_CMDCLASS_far[];
extern BYTE far EEOFFSET_WATCHDOG_STARTED_far;

/* APPLICATION SPECIFIC PART END */

extern t_nvmModuleDescriptor far nvmApplicationDescriptor;

/* The starting address of the segment ?FD?EEPROM (to be used as a constant as (WORD)&_FD_EEPROM_S_) */
extern unsigned char _FD_EEPROM_S_;
/* The length of the segment ?FD?EEPROM in bytes (to be used as a constant as (WORD)&_FD_EEPROM_L_) */
extern unsigned char _FD_EEPROM_L_;

SerialAPIPlus also have allocated space in external NVM for use by the HOST connected to the
SerialAPIPlus module. To accommodate the HOST external NVM usage SerialAPI uses the nvmHost.c
to define the requirements of HOST accessible external NVM.

#pragma USERCLASS(CONST=NVM)

#include "ZW_basis_api.h"
#include "nvmHost.h"
#include "ZW_nvm_descriptor.h"

/*--*/
/* NVM layout SerialAPIPlus (host application part) (as in t_nvmModule) */
/* (begin) */

/* Offset from &nvmModule where nvmModuleDescriptor structure is placed */
t_NvmModuleSize far nvmHostApplicationSize = (t_NvmModuleSize)&_FD_NVMHOST_L_;

/* APPLICATION SPECIFIC PART START */

/* Host application non volatile variables */
BYTE far EEOFFSET_HOST_OFFSET_START_far[NVM_SERIALAPI_HOST_SIZE];

/* APPLICATION SPECIFIC PART END */

/* NVM module descriptor for module. Located at the end of NVM module. */
/* During the initialization phase, the NVM still contains the NVM contents */
/* from the old version of the firmware. */
t_nvmModuleDescriptor far nvmHostApplicationDescriptor =
{
 (t_NvmModuleSize)&_FD_NVMHOST_L_, /* t_NvmModuleSize wNvmModuleSize */
 NVM_MODULE_TYPE_HOST_APPLICATION, /* eNvmModuleType bNvmModuleType */
 (WORD)&_APP_VERSION_ /* WORD wNvmModuleVersion */
};

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 31 of 36

 CONFIDENTIAL

/* NVM layout SerialAPIPlus (as in t_nvmModule) (end) */
/*--*/

/* NVM module update descriptor for this new version of firmware. Located */
/* in code space. */
const t_nvmModuleUpdate code nvmHostApplicationUpdate =
{
 (p_nvmModule)&nvmHostApplicationSize, /* nvmModulePtr */
 /* nvmHostApplicationDescriptor is the first new NVM variable since devkit_6_5x_branch */
 (t_NvmModuleSize)((WORD)&nvmHostApplicationDescriptor), /* wNvmModuleSizeOld */
 {
 (t_NvmModuleSize)&_FD_NVMHOST_L_, /* t_NvmModuleSize wNvmModuleSize */
 NVM_MODULE_TYPE_HOST_APPLICATION, /* eNvmModuleType bNvmModuleType */
 (WORD)&_APP_VERSION_ /* WORD wNvmModuleVersion */
 }
};

And the matching nvmHost.h for making the NVM variables accessible for source code. Also here is the
NVM_SERIALAPI_HOST_SIZE which defines how much external NVM are available for HOST.

#include "ZW_nvm_descriptor.h"

/* NVM allocation definitions */

/* APPLICATION SPECIFIC PART START */

#if defined(ZW_CONTROLLER) || defined(ZW_SLAVE_32)
/* NVM is 16KB, 32KB or even more (you decide the size of your SPI EEPROM or FLASH chip) */
/* Use only a reasonable amount of it for host application */
#define NVM_SERIALAPI_HOST_SIZE 2048
#else
/* For routing slaves the total number of NVM data bytes available is 254 Bytes */
#define NVM_SERIALAPI_HOST_SIZE 16
#endif

/* APPLICATION SPECIFIC PART END */

/* NVM layout SerialAPIPlus (host application part) */
extern t_NvmModuleSize far nvmHostApplicationSize;

/* APPLICATION SPECIFIC PART START */

extern BYTE far EEOFFSET_HOST_OFFSET_START_far[NVM_SERIALAPI_HOST_SIZE];
/* APPLICATION SPECIFIC PART END */

extern t_nvmModuleDescriptor far nvmHostApplicationDescriptor;

/* The starting address of the segment ?FD?NVMHOST (to be used as a constant as (WORD)&_FD_NVMHOST_S_) */
extern unsigned char _FD_NVMHOST_S_;
/* The length of the segment ?FD?NVMHOST in bytes (to be used as a constant as (WORD)&_FD_NVMHOST_L_) */
extern unsigned char _FD_NVMHOST_L_;

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 32 of 36

 CONFIDENTIAL

4.5.3 External NVM Application data initialization

As a part of program initialization, NVM data is initialized in a fashion like normal data is.

Initialized data is when the data is initialized in its definition. All data, which is not defined as initialized
will be cleared to zero.

NVM data shall only be initialized or cleared the first time the program starts. So a validation of the old
NVM data content is made, to decide whether it is a first time startup.

During startup of a new firmware upgraded software a distinction is made between old NVM data and
new NVM data, so that the old NVM data is left untouched, and the new NVM data is handled like if it
was a first time startup.

To control the distinction between old and new NVM data there is a chain of descriptors in the NVM data
area (segment HDATA) for the old NVM data to be used during startup. And there is a chain of
descriptors in code area (segment CONST_NVM) for the new firmware to be used during startup.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 33 of 36

 CONFIDENTIAL

4.6 C Coding Requirements

The following sections describe important C coding requirements and guidelines

4.6.1 Indirect function pointers when using code banking

The 500 series chip uses code banking, which requires important modifications to the application with
respect to indirect function pointers. One example is the callback function used in ZW_SendData. The
function below:

/*======================== cbVoidByte =======================

**

** Function: stub for callback

**

** Side effects: None

**

**--*/

static void cbVoidByte(BYTE b)

{

}

must be change to:

code const void (code * ZCB_cbVoidByte_p)(BYTE b) = &ZCB_cbVoidByte;

/*====================== ZCB_cbVoidByte =====================

**

** Function: stub for callback

**

** Side effects: None

**

**--*/

void

ZCB_cbVoidByte(BYTE b)

{

}

This change enables the linker to add ZCB_cbVoidByte to the interbank call table. Another problem is
that the static attribute is applied to the ZCB_cbVoidByte function, which must be removed. The linker
cannot generate an interbank call table entry for non-public (static) functions. ZCB_ added for easy
identification of the indirectly called functions. Forgetting above modification is not caught by
compiler/linker and results in unpredicted behavior such as a non-responding application.

For details refer to: http://www.keil.com/support/docs/2486.htm

4.6.2 Testing for generic null pointers

Keil C51 has both generic and memory specific pointers. The memory specific pointers are a proprietary
extension to C and do not follow standard rules. A memory specific pointer with value 0x0000 converted
to a generic point will get the value 0xFF0000, 0x010000 or similar, depending on the type of memory
specific pointer. Therefore, testing the generic pointer for NULL-ness with ‘if(ptr)’ will fail. Instead use the
macros NON_NULL(p) and IS_NULL(p) to test the pointer. An example:

https://www.silabs.com/
http://www.keil.com/support/docs/2486.htm

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 34 of 36

 CONFIDENTIAL

void

func(BYTE *ptr)

{

 if(NON_NULL(ptr) // if(ptr) is wrong!!

 {

 *p = 42;

 }

}

For a discussion of this problem see http://www.keil.com/forum/3443 and
http://www.keil.com/support/docs/2630.htm.

4.6.3 Function pointers must be code-specific

Function pointers MUST always be declared as code specific pointer. This can easily be done with the
VOID_CALLBACKFUNC() macro:

VOID_CALLBACKFUNC(funcptr)(BYTE b);

For function pointers, this will avoid the problem described in section 4.6.2. Despite this, section 4.6.2 is
still recommended for function pointer.

4.6.4 Code Space Shortage

In case an application doesn’t have enough code memory available the following code usage
optimization tips can be used:

1. Use BOOL instead of BYTE for TRUE/FALSE type variables.
2. Try to force the compiler to use registers for local BYTE variables in functions.
3. Avoid using floats because the entire floating point library is linked to the application.
4. Loops are often smallest if they can be done with a do while followed by a decrease of the counter

variable.
5. The Keil compiler does not always recognize duplicated code that is used in several different places,

so try to move the code to a function and call that instead.
6. Avoid having functions with many parameters, use globals instead.
7. Changing the order of parameters in a function definition will sometimes save code space because

the compiler optimization depends on the parameter order.
8. Be aware when using functions from the standard C libraries because the entire library is linked to

the application.
9. The dead code elimination in the Keil compiler doesn't always work, so remove all unused code

manually.

https://www.silabs.com/
http://www.keil.com/forum/3443/
http://www.keil.com/support/docs/2630.htm

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 35 of 36

 CONFIDENTIAL

REFERENCES

[1] Silicon Labs, INS12303, Instruction, Z-Wave 500 Series Developer’s Kit v6.51.10 Contents.
[2] Silicon Labs, INS13050, Instruction, Z-Wave 500 Series Developer’s Kit v6.61.01 Contents.
[3] Silicon Labs, INS13477, Instruction, Z-Wave 500 Series Developer’s Kit v6.71.01 Contents.
[4] Silicon Labs, APL12444, Instruction, Porting Z-Wave Appl. SW from ZW0301 to 500 Series.
[5] Silicon Labs, APL12445, Application Note, Porting Z-Wave Appl. SW from 400 to 500 Series.
[6] Silicon Labs, INS13448, Instruction, Z-Wave 500 Series Application Programmers Guide v6.70.00.
[7] Silicon Labs, INS13427, Instruction, Z-Wave Plus Application Framework v6.70.0x.
[8] Silicon Labs, SDS11846, Software Design Specification, Z-Wave Plus Role Types Specification.
[9] Silicon Labs, SDS11847, Software Design Specification, Z-Wave Plus Device Types Specification
[10] Silicon Labs, SDS13781, Software Design Specification, Z-Wave Application Command Class

Specification.
[11] Silicon Labs, SDS13782, Software Design Specification, Z-Wave Management Command Class

Specification.
[12] Silicon Labs, SDS13783, Software Design Specification, Z-Wave Transport-Encapsulation

Command Class Specification.
[13] Silicon Labs, SDS13784, Software Design Specification, Z-Wave Network-Protocol Command

Class Specification.
[14] Silicon Labs, SDS13548, Software Design Specification, List of defined Z-Wave Command

Classes.
[15] Silicon Labs, SDS10242, Software Design Specification, Z-Wave Device Class Specification.

https://www.silabs.com/

INS12366-22 Working in 500 Series Environment User Guide 2018-03-06

silabs.com | Building a more connected world. Page 36 of 36

 CONFIDENTIAL

INDEX

C

Code specific pointer ... 34
Command prompt .. 4, 13

D

DOS box .. 4, 13

E

External NVM ... 27

F

Function pointers ... 33

I

Indirect function pointers ... 33

K

Keil ... 2
KEILPATH ... 3

M

Make files ... 15
Memory optimization.. 34
Memory specific pointers ... 33
MK.BAT ... 15

N

NVM initialization ... 27

T

TOOLSDIR .. 4

U

uVision4 ... 13

Z

Z-Wave Plus applications .. 27
Z-Wave Plus Applications Framework... 27

https://www.silabs.com/

	1 Abbreviations
	2 Introduction
	2.1 Purpose
	2.2 Audience and prerequisites

	3 Development Environment Setup and Execution
	3.1 3rd party tools to SDK
	3.2 Environment Setup
	3.3 Compiling from the Command Line
	3.4 Makefile project
	3.4.1 BOOT parameter
	3.4.2 BOARD parameter
	3.4.3 CHIP parameter
	3.4.4 CODE_MEMORY_MODE parameter
	3.4.5 FREQUENCY parameter
	3.4.6 HOST_INTERFACE parameter
	3.4.7 IMA parameter
	3.4.8 LIBRARY parameter
	3.4.9 SENSOR_TYPE parameter
	3.4.10 TEST_INTERFACE parameter
	3.4.11 UVISION parameter
	3.4.12 UVISIONPREBUILD parameter
	3.4.13 UVISIONPOSTBUILD parameter
	3.4.14 WATCHDOG parameter

	4 Developing Application Code
	4.1 Porting Requirements
	4.2 Application Interrupt Service Routine
	4.2.1 uVision project
	4.2.2 Makefile projects

	4.3 Bootloader
	4.3.1 SDK6.61 NVM descriptor layout

	4.4 OTA Firmware Update
	4.4.1 Handling uncompressed OTA files
	4.4.2 Handling compressed OTZ files
	4.4.3 Z-Wave Plus OTA Firmware Update implementation
	4.4.4 Firmware updating SDK 6.51.xx/6.61.xx to the SDK with S2 support (SDK 6.7x)
	4.4.4.1 Intermediate application Makefile
	4.4.4.2 Intermediate application source code

	4.5 Z-Wave Plus Application implementation
	4.5.1 External NVM Application data
	4.5.2 External NVM Application data layout and location
	4.5.2.1 SDK 6.6x+ External NVM Application data layout and location

	4.5.3 External NVM Application data initialization

	4.6 C Coding Requirements
	4.6.1 Indirect function pointers when using code banking
	4.6.2 Testing for generic null pointers
	4.6.3 Function pointers must be code-specific
	4.6.4 Code Space Shortage

	References
	Index

